
FINAL REPORT

February 28, 2009

AFOSR Grant FA9550-06-1-0164

DEVELOPMENT OF IMPLICIT COMPACT METHODS

FOR CHEMICALLY REACTING FLOWS

Mitchell D. Smooke

Yale University
Department of Mechanical Engineering

Becton Center
15 Prospect Street

New Haven, CT 06511

20090325301

AFRL-SR-AR-TR-09-0079

REPORT DOCUMENTATION PAGE

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

26-02-2009
2. REPORT TYPE

Final
DATES COVERED (From - To)

Mar 2006 - Nov 2008
4. TITLE AND SUBTITLE

Development of Implicit Compact Algorithms with Application to Chemically
Reacting Flows

5a. CONTRACT NUMBER

5b. GRANT NUMBER

FA9550-06-1-0164

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Smooke, Mitchell
Long, Marshall

5d. PROJECT NUMBER

be. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Yale University, Grant & Contract Administration
155 Whitney Avenue, Suite 214
New Haven, CT 06520

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH
875 N Randolph St
Arlington, VA 22203
Dr. Fariba Fahroo/NL

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

DISTRIBUTION A: Approved for Public Release

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This project has focused on the design of numerical algorithms that are well suited to the computation of time-dependent chemically
reacting flows with finite-rate kinetics and detailed transport. High order compact finite differences have been used to discretize the
spatial operators since the spectral-like resolution of the small scales makes it feasible to conduct accurate, long-time computations
of multidimensional flames burning real fuels. In view of the stiffness of the chemical mechanisms characterizing these fuels,
implicit time integration techniques have been employed. The fully coupled implicit-compact solver developed during this grant has
been successfully applied to a sequence of test problems, from convection-diffusion equations with analytical solutions to
multicomponent low-speed heated jet flows in two dimensions to a model premixed flame with two-step Arrhenius chemistry.
Along the way, important advances have been made in the following areas: highly efficient algorithms for storing and manipulating
the Jacobian matrix in the Newton solver, robust preconditioned iterative linear algebra methods, strategies for steady solutions with
J^mk

/",H"1- A..,nfn.**-w .-»».,-..-..• ~>A n-.,*-nw^r.*-nA ,,,-.^4,-. A^t , ,-t I .-^-.-.,-.-.+ *•'"*" /"'..••.•-,.-.« ..r,^.-b .. ,1... ;,it,->J tn ,..-..-> 1 ,,..-.. , «[-.,-> « *-*-* *. K n '. » ,-. ^ .,,„,-. ,-»»,•,-. 1 ,

15. SUBJECT TERMS

high-order discretizations, compact methods, implicit time stepping, combustion, diagnostics

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (Include area code)

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std Z39 18

Introduction
It is clear from both a logistical and an economic viewpoint that the combustion of
hydrocarbon fuels will continue to play a central role in US Air Force operations. In
addition, with world events demanding enhanced flexibility in the sources of fuels, it is
becoming increasingly important to improve scientific knowledge of the combustion
properties of different fuel blends. Chemically reacting flows utilizing hydrocarbon fuel
blends occur in a variety of energy conversion processes such as combustion, propulsion,
and fuel reforming, to name just a few. They are also relevant to many material synthesis
technologies. If the chemical transformations and, in some cases, attendant energy release
can be made to happen in a well-controlled and well-defined fashion, the goal of either
liberating heat, partially oxidizing a fuel, generating electrical power, or synthesizing
advanced materials should be achievable with high efficiency and minimal pollution.

Hydrocarbon fuels will remain a major source of energy well into the second half of the
21 st century and, despite dire warnings about their limited supply, known resources have
actually increased over the past decade. Nevertheless, finite supplies will continue to
exert pressure on the efficient use of these fuels, especially as the price of oil continues to
skyrocket. In the engineering of chemically reacting flows, increased efficiency and
reduced pollution can be achieved via an integrated approach that extends the state-of-
the-art of both experimental and computational methodologies. By making advances in
each of these areas and by integrating them in well-conceived research programs,
scientists will be able to have a dramatic impact on the design of technologies involving
energy conversion and combustion. One of the most technically challenging engineered
systems of importance to the Air Force in which chemically reacting flows play a critical
role are gas turbines (GTs). For aeropropulsion applications, there are no alternative
energy replacements of GTs in sight. In addition, the majority of the electrical power to
be added in the United States and around the world through 2015 will be based on GTs.
Advances in GT engineering would inevitably affect the entire combustion industry, and
the economic repercussions of these advances would be amplified further as critical
combustion issues for GTs are also important to the transportation industry. Moreover,
the economic payoff for US Military Operations could be enormous.

Many contributions are needed to advance the frontiers of the science behind such
engineered systems, and thereby to enhance the nation's economic base and help stabilize
it against foreign competition and dependencies. The research will focus on the
development of advanced computational methodologies that will enable reacting flow
simulations which are more rapid and more accurate than those currently feasible, and
which, on both counts, are capable of deepening an understanding of the fluid dynamics
and aerothermochemistry underlying many vital technologies. Specifically, this research
has considered numerical algorithms designed for the solution of gas-phase combustion
with detailed transport and finite-rate chemistry. To help achieve these goals, a
companion experimental program has been initiated in which the complexity of the
various systems is being dissected into well-defined laboratory-scale problems, from
which data can be provided for the validation of the computational models.

Overview of the Implicit-Compact Solver
The implicit-compact methods studied in this granting period have been designed to meet
two well-known challenges in modeling time-dependent combustion: the stiffness
induced by the vastly disparate timescales in the chemistry, which calls for implicit time
integration; and the significant spatial structure in the flow field, which cannot be
captured without high resolution, low diffusivity spatial discretizations. The main idea of
a compact scheme discretization is to construct algebraic relationships between the values
of a function and of its derivative at the nodes of a grid. These equations are written in
matrix form; the matrices are banded, generally tridiagonal, and hence can be inverted
efficiently. The coefficients are constant for a given grid and are defined by matching the
terms of Taylor series expansions. The spatial discretizations used in this work have a
variable order of accuracy, depending on the grid spacing and the presence of steep
gradients near the domain boundaries. The maximum order is six and the minimum is
three. Quite apart from their classical order of accuracy, the particular advantage of the
compact schemes is their "spectral-like" resolution of moderately high wave numbers. In
practice, this allows good accuracy over a long time with many fewer grid points than
would be required by a traditional low order finite difference method.

In the implicit-compact solver, the governing partial differential equations (PDEs) are
semi-discretized using a compact finite difference procedure (a finite volume method
could be used too). Then, after the spatial discretization, the system of ordinary
differential equations is discretized with an A-stable backward difference formula (BDF),
following the "method of lines" approach. The resulting nonlinear algebraic system is
solved by a damped inexact Newton's method. An approximate solution to the linearized
Newton system is obtained using an iterative Krylov method (GMRES) with an
appropriate preconditioner (incomplete LU decomposition with a scaling/reordering
preprocessor). The solver has been thoroughly tested on problems with known analytical
solutions, thus verifying the correctness of all temporal and spatial discretizations. Seeing
as the preconditioner is the most expensive part of the solution process, coarse-grain
parallelism was introduced into this module by means of restricted additive Schwarz
domain decomposition, implemented in a shared memory context by OpenMP pragmas.
The payoff here was not significant (due to memory bandwidth issues, the code could
only run effectively on 4-6 threads at once), and the extension of the domain
decomposition algorithm to a distributed memory context remains a task for future work.
As a result of an AFOSR DURIP award, the hardware for this work is already in place: a
cluster with 128 cores, 512 GB of RAM, and several terabytes of disk, all connected via a
high-speed DDR Infiniband fabric.

The code has been written in Fortran. By now, almost all of the modules have been (at
least partly) modernized to take advantage of Fortran 90/95 enhancements in the area of
array processing, user-defined data structures, and data encapsulation in modules. The
only exception is the MC64 code, which has been taken from the Harwell Subroutine
Library. The Fortran for all of the problem-specific subroutines has been produced by a
Mathematica code generation tool, as noted below. Partial listings of this script and of the
residual and Jacobian subroutines created with it are attached as Appendices.

Accomplishments: Modeling

(a) Computing the pressure field: Originally, the plan was to work with a velocity-
vorticity formulation of the fluid dynamical problem, a decision based primarily on the
experience obtained in using vorticity-based methods to model flames. A side benefit
here was that there would be no need to contend with the signature challenge of low
speed flows: computing the pressure field. Before long, however, it became clear that the
velocity-vorticity formulation leads to intractable linear systems in the Newton iteration
for time-dependent problems discretized in space with compact schemes. Accordingly,
during the first six months of the grant, the intended approach to the fluid dynamics was
abandoned in favor of a primitive variables formulation. Since acoustic effects were not
of primary interest, the zero Mach number approximation was employed in formulating
the governing equations. As is standard in the modeling of low-speed flows, the
hydrodynamic pressure was taken as the independent variable, thermodynamic pressure
was constant, and the density was recovered from the ideal gas law. Note that, with a
fully coupled solver, continuity can be enforced even though dynamic pressure is retained
as the corresponding unknown. Also, by constructing the numerical method to take
advantage of the natural coupling of the variables, a Poisson equation for pressure and a
pressure projection step are not needed. In studying flow in a pipe, it was initially
observed that the smoothness of the solutions tended to be very sensitive to the choice of
grid; specifically, it was found that local under-resolution of the radial velocity field led
to noticeable oscillations in the pressure field along most of the length of the pipe. The
lesson learned was that the tight, global coupling of all unknowns in the implicit-compact
discretization places high demands on the adequate spatial resolution of all structures and
boundary layers in the flow field. Once this was achieved, the solver delivered strikingly
smooth, accurate solutions, the likes of which it was impossible to achieve with
traditional low order methods. These results have demonstrated that the notorious
"pressure-velocity decoupling" problem, which manifests itself as an oscillatory pressure
field in finite difference calculations using collocated grids, can be overcome by using
compact schemes to discretize in space:

, 0.15

(14
r (cm)

0.45

Contours of dynamic pressure, compact scheme (color) vs. low order method (black lines).
Left: steady pipe flow (Re=500, pipe radius=0.4cm). Right: oscillating cold jet flow at 0.025 s.
The small-amplitude grid-scale noise in the low order solutions is due to the pressure-velocity
decoupling.

(b) Unsteady multicomponent flows with thermal mixing: Before attempting to compute
reacting flows it was imperative to move beyond simple flows and demonstrate the
capability of the implicit-compact solver to model complicated multicomponent flows
with thermal and species mixing. The work focused on jet flows in quasi-open
axisymmetric geometries, where the flow configuration was chosen to mimic that of the
diffusion flames which are the goal of this research. Here, "quasi-open" means that a
solid wall was placed in the radial far-field of the computational domain, at a distance of
many jet radii from the centerline. Though this introduced a flow recirculation zone near
this wall, the velocities were very small and any difficulty of computing the recirculation
was more than compensated by the ability to use a simple "no slip" Dirichlet boundary
condition there for the velocity field. This took the complicated issue of open boundary
conditions off the table where it was most likely to be a sticking point, in the radial far-
field (homogeneous Neumann outflow conditions are probably feasible for the high order
solver since the grids used in flame calculations are typically very long in the axial
direction). Calculations of an oscillating heated jet issuing into quiescent cool air were
undertaken. The reference calculations used the same low order discretization employed
in a previously developed flame code, namely, second order centered differences for
diffusive terms and first order (monotone) upwinding for convective terms. These
solutions were ruined by strong artificial viscosity from the upwind differencing. By
contrast, the calculations with the compact scheme discretization successfully captured
the spatial structure of the flow, revealing a marked "pinching" in the temperature field
that was qualitatively similar to the thermal structure of the time-varying diffusion flame
studied at Yale in the laboratory of Marshall Long. Both calculations were run with a
time step small enough to ensure that the spatial error dominated. A comparison of the
results is presented in the figure below.

Temperature contours in a forced, heated jet flow (Re=500, AT=100K), compact scheme (CS)
vs. low order (LO) solution. The forcing frequency is 20 Hz. The images are taken at 0.0,
0.0125, 0.025, and 0.0375 s.

(c) Complex chemistry capability: A model premixed flame was studied in order to
isolate the numerical challenges of realistic combustion thermochemistry from those
relating to the fluid dynamics (the flow field is imposed in the model). Three convection-
diffusion-reaction equations with exponentially nonlinear two-step Arrhenius chemistry
were solved for temperature and two reacting species in a two-dimensional axisymmetric
geometry. These calculations have provided a proof-of-concept that the implicit-compact
methods can deliver accurate and efficient solutions to stiff multi-step chemistry
combustion problems. These types of problems arise in modeling the combustion of
aviation fuels of interest to the Air Force, and they create significant numerical
challenges for both explicit methods (CFL restrictions) and many splitting methods
(additional accuracy limitations due to splitting errors). Calculations of the steady, two-
dimensional model flame were performed with both the compact scheme and the low
order semi-discretizations, and the steady solutions were then used to initialize time-
dependent calculations, where the imposed flow was periodically varying (much like in
the oscillating jet flow discussed above). In the transient simulation, comparison of the
compact scheme solution with the low order solution revealed the presence of numerical
diffusion in the latter. This can be observed most clearly in the damping of the temporal
oscillation of the intermediate species. This artifact of the spatial discretization had
hampered earlier low order simulations of time-varying diffusion flames. The implicit-
compact solver succeeds in generating spatially accurate solutions for such problems, and
since it allows for large time steps the computational cost is reasonable.

0.1028

-2-10 1
r (cm)

Evolution of intermediate species concentration in the model premixed flame problem,
compact scheme (CS) vs. low order (LO) solution. The frequency of oscillation is 10 Hz. The
images are taken at 0.0, 0.02, 0.04, and 0.06 s, respectively.

(d) Experimental validation of the solver: Concurrent with the numerical development
was the construction of the experimental configuration for validating the new implicit-
compact solver, which will be essential as the work transitions to detailed chemistry
flame simulations. Toward the end of the granting period, a burner was tested in which

fuel flows from a 0.4 cm inner diameter vertical tube (wall thickness 0.038 cm) into a
concentric, 7.4 cm diameter oxidizer coflow.

CAD drawing of the forced-flow burner used in the time-varying diffusion flame experiments.

A speaker in the plenum of the fuel jet allows a periodic perturbation to be imposed on
the exit parabolic velocity profile. The fuel is diluted with nitrogen and the velocities
have been carefully tuned so as to produce a flame with negligible soot that is lifted
above the burner surface, preventing heat transfer from the flame to the burner. These
operating conditions have been designed to simplify the calculations in such a way that
physical realism is not sacrificed. Recently, laser diagnostic techniques such as Raman
and Rayleigh scattering have been used to measure temperature and major species
profiles from flames using this burner.

Accomplishments: Numerical Methods and Software

(a) Efficient Jacobian operations for compact scheme discretizations: The first hurdle in
developing the implicit-compact methodology has been to devise a set of highly efficient
numerical algorithms for the formation, multiplication, and element-extraction of the
Jacobian matrix, and to develop the means to implement these algorithms effectively in a
large scientific code. The methods used to accomplish these tasks have come to maturity
over the past few years. Though dense by any typical criterion of matrix sparsity,
compact scheme Jacobians possess a latent structure based on the fact that they arise from
a discretization of a PDE. The idea of decomposing the Jacobian into "local" and
"spatial" components exploits this structure to achieve a form of data compression. To
illustrate the idea: if U is the independent variable and F = F(U,Ux) is the residual, whicli
is a function of U and its spatial derivative Ux, the Jacobian matrix in Newton's method
can be reconstructed by considering Ux to be independent of U, forming the "local"
Jacobian components dF/dU and the "spatial" Jacobian components dF/d(Ux), and
observing that J = dF/dU + (dF/d(Ux))*Dx, where Dx is the appropriate coefficient of the
differentiation matrix used to calculate Ux from U. The result of using this decomposition

is that, even for the most memory intensive combustion problems, a Jacobian arising
from a compact scheme spatial discretization can be stored with less memory than a
conventional finite difference method would need to store an equivalent low order
Jacobian. Moreover, once generated, the compact scheme Jacobian can be applied to a
vector extremely efficiently, since J*V = (dF/dU)*V + (dF/d(Ux))*(Dx*V) = (dF/dU)*V
+ (dF/d(Ux))*Vx. Here it is seen that J*V is equal to the sum of two dot products, one of
the "local components" with the vector V and the other of the "spatial components" with
the vector Vx. The fundamental operation in any iterative linear algebra routine is the
matrix-vector product. With this algorithm it can be computed in O(N) flops.

(b) Linear algebra enhancements I. Robust iterative methods: A fully coupled solution
paradigm makes little sense without robust and efficient numerical linear algebra
algorithms. These already exist for the low order spatial discretizations commonly used
in computational combustion; for the compact discretizations, they have been discovered
and fine-tuned during the tenure of this grant. In the first year, in the course of studying
pipe flows, it was found that the use of large grids (i.e., many points) led to stagnation in
the preconditioned Bi-CGSTAB linear solver. The difficulties were more severe than
anything encountered using Bi-CGSTAB in solving combustion problems within the past
fifteen years. To overcome them, a new iterative linear algebra module was developed
and integrated into the implicit-compact solver. Based on GMRES, it enjoys the
monotonicity and enhanced robustness of this method, while retaining the state-of-the-art
MC64-ILUT preconditioner that has proven effective for the challenging linear systems
produced by compact semi-discretization. The implementation made some sacrifices of
efficiency for greater reliability, such as eschewing restarts and performing modified
Gram-Schmidt with full re-orthogonalization for the Arnoldi process, though the penalty
incurred was minimal for time-dependent problems, where the Jacobian matrices have
large diagonal terms and the linear system solution is fast. In any case, even in the
absence of optimizations, the new linear solver not only made it possible to solve
problems that had previously caused the code to fail (e.g., a large binary mixing problem
on very nonuniform grids), but also displayed significant performance gains over its
predecessor (e.g., showing between a two- and five-fold decrease in the time spent
solving linear systems). A decade ago, memory constraints made the use of GMRES in
flame calculations much more difficult than it is today.

(c) Linear algebra enhancements II. Robust preconditioning: The basic approach of
applying a purely algebraic MC64-ILUT preconditioning algorithm to a pre-sparsified or
"partial" Jacobian matrix is sound, but also potentially expensive and difficult to optimize
due to the parameters in the algorithm. Early on, by performing a sequence of tests on
basic fluid dynamics test problems one could sample enough of the parameter space of
the preconditioner to come to a satisfactory understanding of how at least to get the
incomplete factorization to work. With ILUT, it became clear that the drop tolerance was
the more expensive and less effective parameter to tune. Hence, the strategy originally
employed was to compute with a modest fill-in parameter and to recompute with more
fill if the linear solver failed. As long as this worked, it was fine; however, as the
difficulty of the physical models and the size of the problems were scaled up, both the
heightened importance of the preliminary sparsification phase and the pressure, for the
sake of computational efficiency, to form the preconditioner less frequently clarified a

new question: when the linear solver fails, is this due to a specific problem with the ILL!
or rather simply to an out-of-date or otherwise ineffective preconditioner? In the effort to
answer this question, the linear solver module was enhanced by the addition of a number
of inexpensive sanity checks that helped us to interpret the results of successful linear
solves and to diagnose the cause of failures. By far the most frequent cause of failure was
instability in the ILU. This was deduced by comparing the condition estimates of the ILU
and of the preconditioned linear system, or rather, of the Hessenberg matrix constructed
by GMRES, which represents the projection of this linear system onto the
orthonormalized Krylov basis. A poorly conditioned ILU indicates instability in the
incomplete factorization process; given a well conditioned ILU, a poorly conditioned
Hessenberg suggests that the preconditioner is inaccurate. The diagnosis is
straightforward, and in the former case, so is the cure: perturb the diagonal of the partial
Jacobian and recomputed the ILU. This understanding was a breakthrough for two
reasons. First, it meant that many, perhaps the majority of, failed linear solves could be
rectified at essentially no increase in computational cost. Applying a diagonal
perturbation is a negligible expense compared to the ILU, the ILU can be performed
without increasing the level of fill-in, and if the perturbation is not large the resulting
preconditioned Krylov process can still converge in a reasonable number of iterations. By
contrast, the previous approach to addressing failure in the linear solver (recomputing the
ILU with more fill-in) has a cost in terms of both memory usage and time which grows
unpredictably with increasing fill. Second, the use of diagonal perturbations has allowed
stabilized ILU factorizations of compact scheme partial Jacobians at much larger time
steps than otherwise possible. This has again made it feasible to calculate steady solutions
with the compact scheme solver for some large-scale problems where previously this had
been out of the question (see the figure below, and discussion in (d)).

Diagonal perturbation
of 0(100)

0.00001 \

E I.x 10 -7

No diagonal
perturbation Unperturbed preconditioner only works in a

limited range of time steps

0.001 0.01 0.1 1
At (pseudo—time)

10 100

(d) Constructing good initial conditions for time-dependent problems: The semi-
discretized governing equations for a transient flame problem in the primitive variable
formulation are a system of differential-algebraic equations (DAEs). As is well known, a
DAE requires consistent initialization: it is important to construct an initial condition that
satisfies the algebraic constraints so as to avoid boundary layers and maintain accuracy in
the early phase of the computations. Moreover, if high order spatial discretizations were
used in moving from the original PDE to the DAE, this initial condition must itself meet
strict smoothness requirements. A basic challenge for those employing high order

methods is how to generate such an initial condition. In practice, one often wishes to use
a steady-state solution for this purpose. This was the approach assumed at the inception
of this research program. However, it was very difficult to generate a steady compact
scheme solution from scratch using Newton iteration with pseudo-transient continuation,
the method of choice for problems discretized with traditional low order finite
differences. The source of the difficulty is that, contrary to their name and their
reputation, the effective computational stencils of compact schemes are very wide (the
inverse of a tridiagonal matrix is structurally dense), so Jacobian matrices based on
compact scheme discretizations can be, and at steady state generally are, very far from
diagonal dominance, and hence very difficult to precondition using known methods. As a
workaround, a low-cost and effective means of computing satisfactorily smooth and
accurate initial conditions for high order flow simulations was developed. The method
takes the "inadequate" steady-state solutions produced by low order solvers and marches
them in pseudo-time with moderately large time steps using the implicit-compact solver.
This procedure has been greatly facilitated by progress in learning how to stabilize the
ILU preconditioner at such time steps, as described above.

(e) Code generator. At present, the entire computational kernel of the implicit-compact
solver (the residual function, the Jacobian operations, and all of the problem-specific
preconditioner routines) can be generated automatically in Fortran or C, by simply
entering the partial differential equations and the boundary conditions in standard
mathematical notation and executing a Mathematica script. For simplicity, vector
calculus operators (Grad, Div) can be used in formulating the problem, which another
freely available Mathematica package translates into the correct partial derivatives based
on the geometry specified (Cartesian, Cylindrical, etc.). This software tool has drastically
shortened the programming and debugging phases of code development, and after
reaching its current mature state it has allowed the realization of a relatively fast
turnaround on the study of new problems/problem formulations. In principle, this code
generation script could be turned into a Mathematica package and made available to any
researcher who employs finite difference methods to solve partial differential equations.
As noted in the Overview section of this report, a partial listing of the script is attached as
an Appendix to this report.

Personnel Supported During Duration of Grant
Mitchell D. Smooke, Professor
Marshall B. Long, Professor
Richard Dobbins, Graduate Student

Publications
R.R. Dobbins and M.D. Smooke, "Implicit-Compact Methods for Systems
of Convection-Diffusion Equations," in preparation.

R.R. Dobbins and M.D. Smooke, "Development of Implicit-Compact Methods for
Finite-Rate Chemistry Combustion Problems," in preparation.

R.R. Dobbins and M.D. Smooke, "Initializing Transient Flow Simulations with
the Implicit-Compact Solver: The Role of Conventional Low Order Methods," in
preparation.

Honors and Awards Received
Program Chair, 32r International Combustion Symposium

Chair, Connecticut Academy of Science and Engineering Transportation Systems
Technical Board

Member of the External Advisory Board, Department of Mechanical Engineering,
University of Connecticut

Member of the Engineering Advisory Board, Fairfield University

Member of the Board of Directors, The Combustion Institute

AFRL Point of Contact
Dr. Tim Edwards, AFRL/PRTG, Wright-Patterson AFB, OH, Phone 937-255-3524. Last
meeting occurred at the AIAA ASM in Reno, Nevada, January 2008.

Transitions
None

APPENDIX I:

Mathernatica-bascd Code Generation Tool

(partial code listing)

Formulation-P Time-dependentPrimitive Variables, nb

Primitive variable formulation of the

PDEs

governing time-dependent binary mixing

Richard Dobbins January 2009

Session

O Working directory

Directory!]

SetDirectory["C:\\Documents and Settings\\rd\\My Documents
\\Work - EngineeringW- RESEARCH -\\PROJECTS\\Fluids\\MixingPipe"]

SetDirectory["F:\\PROJECTS\\Combustion\\OneStep_Diffusion"]

F:\PROJECTS\Combustion\OneStep_Diffusion

O Miscellaneous

<< Format.m

Make sure that the package FortranDformat.m is not already loaded, or else
FortranAssign's formatting of some numbers as DP constants will not work correctly!

Off[General::"spelll"]
Off[General::"spell"]
NormalPageWidth = PageWidth / . Options[$Output, PageWidth];
NotZeroQ[X_] : = Not[Developer"ZeroQ[X]] ;

O Error messages

problemsetup::notcomplete =

"Basic arrays (e.g. variables, derivatives,
assumptionsRules) are not yet defined. Must complete problem setup.",-

o PageWidth and linebreaking

Formulation-P Time-dependentPrimitiveVariables.nb

Definitions & initializations

Problem setup

O Coordinate system

<< Calculus~VectorAnalysis~

SetCoordinates[Cylindrical[r, e, z]]

Using NEW VectorAnalysis package which handles tensor operations

Cylindrical[r, 6, z]

o Variables & material properties

pres = P[t, r, e, z] ;

vr = U[t, r, e, z] ;

ve = V[t, r, 0, z] ;

vz = W[t, r, 6, z] ;

v = {vr, v9, vz} ;

temp = T[t, r, 6, z] ;

yk = YK[t, r, 8, z] ;

p = RHO[pres, temp, yk] ;

cp = CP [temp] ;

Acp=LACP[temp]; (* A/cp - a simple function of T *)

JJ = PRACP; (* PR - Prandtl number *)

1
pDk = Acp; (* LEk - Lewis number of species k *)

LEk

vCr = UC[t, r, e, z] ;

vC6 = VC[t, r, 6, z] ;

vCz = WC[t, r, e, z] ;

vC = {vCr, vC6, vCz);

wdot = SOURCE[temp, yk] ;

qdot = HEAT[temp, yk] ;

gr = GR;

g8 = GTHETA;

gz = GZ;

g = {gr, ge, gz);

Formulation-P Time-dependentPrimitiveVariables.nb

O Governing equations

n = 11 (Grad[v] + Transpose[Grad[v]]) + /JB - — n Div[v] IdentityMatrix[3] ;

(** deviatoric stress tensor **)

Continuity-Equation = dtp + Div[p v] ;

NavierStokesEquation = p dtv + p v.Grad[v] + Grad[pres] -pg - Div[n];

EnergyEquation =

Acp qdot
pdttemp + pv.Grad[temp] - Div[AcpGrad[temp]] Grad[cp] .Grad[temp]

cp cp

SpeciesConservation = p dtyk + p •.Gradfyk] +Divfpykvc] - Div[pDk Grad[yk]] -oidot;

0 Boundary conditions

(* INLET *)
Blp = NavierStokesEquation[[3]] ;

Blu = vr;

Blw = vz - Winlet;

Bit = temp - Tinlet;

Bly = yk - YKinlet;

(* SYMMETRY *)

B2p = 9rpres;

B2u = vr;

B2w = drvz;

B2t = dr temp;

B2y = dryk;

(* WALL *)

B3p = NavierStokesEquation[[1]] ;

B3u = vr;

B3w = vz;

B3t = temp - Twall;

B3y = -pDkGrad[yk] [[!]]»

(* no diffusion of species k into the wall: Vk-r Yk = 0, using Fick' s Law *)

(* OUTLET *)

B4p = pres - AtmPressure;
B4u=d2vr + vr; (* Robin condition *)
B4w = dz vz;
B4t = dztemp;
B4y = azyk;

O "Rules" expressing physical assumptions

Formulation-P Time-dependentPnmitiveVariables.nb

O Assumptions made in this problem

* 2-D axisymmetric flow (no swirl)
* negligible bulk viscosity
* axial gravity

aosumptionsRules=

{

(* steadyFlowRule, *)

twoDimensionalAxisymmetricFlowRule,

negligibleBulkViscosityRule,

axialGravityRules

} // Flatten;

o Problem summary

problem= "Time-dependent Axisymmetric Diffusion Flame with One-Step Chemistry";

equations= {"Continuity", "Radial Momentum",

"Axial Momentum", "Temperature", "Species Conservation"};

equationnumbers = Range[Length[equations]];

boundaries= {"Inlet", "Axis of Symmetry", "Wall", "Outflow"};

variables = {P, U, W, T, YK};

species= {"CH4", "02", "C02", "H20", "N2"};

nspecies • Length[species]; (* number of species YK *)

derivtypes= {r, z, rr, zz, rz};

nderivtypes = Length[derivtypes] ;

Outer[StringJoin, Map[ToString, variables]. Map[ToString, derivtypes]] // Flatten;

derivatives • Map[ToExpression, %] ;

Print[

"PROBLEM SUMMARY: ", problem, "\n",

"Equations = ", equations, "\n",

"Variables = ", variables, If[nspecies> 0, "\n", ""],

If [nspecies > 0, "Species - ", ""], If [nspecies > 0, species, ""]

];

PROBLEM SUMMARY: Time-dependent Axisymmetric Diffusion Flame with One-Step Chemistry
Equations = {Continuity, Radial Momentum, Axial Momentum, Temperature, Species Conservation)
Variables = {P, U, W, T, YK}
Species = {CH4, 02, C02, H20, N2 }

Formulation-P Time-dependentPrimitiveVariables.nb

Compact Scheme code generation tools

0 Translation from Mathematica expressions to code symbols

derivativeTranslationRules:

{

Derivative[0, 1, 0, 0] [A

Derivative[0, 0, 1, 0][A_

Derivative[0, 0, 0, 1] [A

Derivative[0, 2, 0, 0] [A

Derivative[0, 0, 2, 0][A

Derivative[0, 0, 0, 2][A

Derivative[0, 1, 0, 1][A_

Derivative[0, 1, 1, 0][A

Derivative[0, 0, 1, 1][A_

Derivative[1, 0, 0, 0] [A

] [t, r, 8, z] :-» Symbol

] [t, r, 9, z] :-> Symbol

] [t, r, 8, z] :•• Symbol

] [t, r, 8, z] :-> Symbol

] [t, r, 6, z] :-> Symbol

] [t, r, 8, z] :-» Symbol

] [t, r, 8, z] :-> Symbol

] [t, r, 8, z] :-» Symbol

] [t, r, 8, z] :-» Symbol

] [t, r, 6, z] :-» Symbol

[ToString[A] <>"r"]

[ToString[A] <>"q"]

[ToString[A] <> "z"]

[ToString[A] <> "rr"

[ToString[A] <> "qq»

[ToString[A] <> "zz»

[ToString[A] <> "rz"

[ToString[A] <> "rq"

[ToString[A] <> "qz»

[ToString[A] <> »t»]

(* derivative w.r.t. p *)

Derivative^, 0, 0] [A] [P[t, r, 8, z] , T[t, r, 8, z] , YK[t, r.

Symbol[ToString[A] <>"p"], Derivative[0, 1, 0][A_][P[t, r,

T[t, r, 8, z] , YK[t, r, 8, z]] :-» Symbol[ToString[A] <> "t"] ,

Derivative[0, 0, 1] [A_] [P[t, r, 8, z] , T[t, r, 6, z] , YK[t, r.

Symbol[ToString[A] <> "y"] ,

Derivative^, 0, 0] [A] [P[t, r, 6, z] , T[t, r, 8, z] , YK[t, r,

Symbol[ToString[A] <> "pp"],

Derivative[0, 2, 0][A_][P[t, r

Symbol[ToString[A] <> "tt"],

Derivative[0, 0, 2][A_][P[t, r

Symbol[ToString[A] <> "yy"],

Derivative[l, 1, 0] [A_] [P[t, r, 0, z] , T[t, r, 6, z] , YK[t, r.

Symbol[ToString[A] <> "pt"],

Derivative^, 1, 1] [A_] [P[t, r, e, z] , T[t, r, 8, z] , YK[t, r.

Symbol[ToString[A] <>"ty"],

Derivative^, 0, 1] [A_] [P[t, r, 9, z] , T[t, r, 8, z] , YK[t, r.

Symbol[ToString[A] <> "py"].

0. z] , T[t, r, 8, z] ,

8, z], T[t, r, 8, z] ,

YK[t, r,

YK[t, r.

8, z]

8, z]

8, z]

8, z]

8, z]

8, z]

8, z]

8, z]

8, z]

Derivativefl] [A_] [T[t, r, 8, z]] :-> Symbol [ToString [A] <>"t"],

Derivative[2] [A] [T[t, r, 8, z]] :-» Symbol [ToString [A] <>"tt"]

};

toCodeNotation[pde_] :=

(
(
Expand[pde] /. derivativeTranslationRules

) /. {A_[t, r, 8, z] -> A}

) /. {A_[P, T, YK] ->A, A_[T] -» A} / . (A_[T, YK] -> A}

Formulation-P Time-dependentPrimitive Variables, nb

O Array pointers

(* "pad" pointers with, spaces where needed to improve code legibility *)

padPointers[ptrs_] :=

Module[{ptrnames, newptrnames= {}, ptrvalues, nptrs, paddedlength, i, ptrinchars},

ptrnames=ptrs[[All, 1]] ;

ptrvalues = ptrs[[All, 2]] ;

nptrs - Length[ptrnames];

paddedlength = Max [StringLength/@ ptrnames] ;

For[i = 1, i $ nptrs, i+ + ,

ptrinchars = Characters[ptrnames[[i]]];

If[paddedlength > Length[ptrinchars],

ptrinchars = PadRight[ptrinchars, paddedlength, " "] ,];

AppendTo[newptrnames, Stringjoin[ptrinchars]] ;

];
Return[Table[{newptrnames[[i]] , ptrvalues[[i]]}, {i, nptrs}]];

]l

Module[

{

i ,

indexHeadEgns = "Meqn",

indexHeadVars= "Mvar",

indexHeadDers= "Kder",

indname,

indindx

}.

If[Not[VectorQ[equationnumbers]] | |

Not[VectorQ[variables]] | | Not[VectorQ[derivatives]],

Message[problemsetup::notcomplete] ; Abort[];,] ;

Clear[indicesEqns, indicesVars, indicesDers];

indicesEqna • StringJoin[indexHeadEqns, #] & /@ (ToString /@ variables);

indicesVars = StringJoin[indexHeadVars, #] & /@ (ToString /@ variables);

indicesDers = StringJoinfindexHeadDers, #] t /@ (ToString /@ derivatives);

indicesEqns= Table[(indicesEqns[[i]], i}, {i. Length[indicesEqns]}]

indicesVars=Table[{indicesVars[[i]], i), (i, Length[indicesVars]}]

indicesDers=Table[{indicesDers[[i]], i}, {i. Length[indicesDers]}]

If[nspecies> 1,

{indname, indindx) = Position[indicesEqns, "MeqnYK"] // Flatten;

indicesEqns = ReplacePart[

indicesEqns,

StringJoinf"(/ (",

ToString[indicesEqns[[indname, indindx+1]]] , "-1+k, k=l,NSP_P) /)"]

Formulation-P Time-dependentPrimitive Variables, nb

(indname, indindx+1}

];
{indname, indindx) =Position[indicesVars, "MvarYK"] //Flatten;

indicesVars = ReplacePart[

indicesVars,
StringJoin["(/ (",

ToString[indicesVars[[indname, indindx+1]]], "-1+k, k=l,NSP_P) /)"],

{indname, indindx+1}

];
YKdernames = Select[indicesDers[[All, 1]], StringMatchQ[#, "*YK*"] &] ;

indlist = Flatten[Position[indicesDers, #] & /@YKdernames, 1] ;

Do[

{indname, indindx) = indlist[[k]];

indicesDers = ReplacePart[

indicesDers,
StringJoin["(/ (", ToString[indicesDers[[indname, indindx+1]]],
"+(k-l)*NDRTP_P, k=l,NSP_P) /)"],

{indname, indindx+1}

]:.

{k, Length[indlist]}

}>
, (* ELSE *)

];

indicesEqns = indicesEgns // padPointers;

indicesVars = indicesVars // padPointers;
indicesDers = indicesDers // padPointers;

0 Code symbols

Options[writeCodeSymbols] =

{
codeform -» FortranForm,
indent -» " " ,

tocode -• {}

};

writeCodeSymbols::usage •

"writeCodeSymbols[symbolarray,output,options]:\n

Writes the symbols (variables, derivatives, etc.) in a given

PDE in code form. Options work as in Jacobian components routines.

Formulation-P Time-dependentPrimitive Variables, nb

writeCodeSymbols[symbolarray, output, options] :=

Module[

{
lhs, rhs, eqn, sublistlength,

sublistwidth, symbol, symboll, symbol2, symbol3, symbolinchars,

paddedlength = 4, (** number of chars/spaces between 1st char and " =" **)

MyCodeForm=codeform /. {options} /. Options[writeCodeSymbols],

MyCodelndent • indent /. {options} /. Options[writeCodeSymbols],

MyToCode= tocode /. {options} /. Options[writeCodeSymbols]

}.

sublistwidth • Dimensions[symbolarray] [[1]];
If [sublistwidth == 1,
symbol • ToString[symbolarray[[1]]];

If [output ~ 1 | | output == 3, Print[symbol, " = ", "\n"],];

symbolinchars = Characters[symbol];

If[Length[symbolinchars] < paddedlength,

symbol = StringJoin[PadRight[symbolinchars, paddedlength, " "]],];

lhs = StringJoin[MyCodelndent, symbol, " = •] ;

MyToCode= Flatten[Append[MyToCode, {"\n", lhs}]];
, (** ELSE **)
symboll = ToString[symbolarray[[1]]];

symbol2 = ToString[symbolarray[[2]]] ;
symbol3 = ToString[symbolarray[[3]]] ;

If [output ~ 1 | | output == 3,
Print[symboll, " = ", symbol2, " (" , symbol3, ",ind)", "\n"],];

symbolinchars = Characters[symboll];
If[Length[symbolinchars] < paddedlength,

symboll=StringJoin[PadRight[symbolinchars, paddedlength, " "]],];
lhs = StringJoin[MyCodeIndent, symboll, " = "] ;

rhs=StringJoin[symbol2, "(", symbol3, ",ind)"];
MyToCode=Flatten[Append[MyToCode, {"\n", lhs, rhs}]];

];

If[FreeQ[{options}, tocode].

If [(output == 2 | | output == 3) , Print e@ MyToCode,] ,

Return[MyToCode]

];

].-

Formulation-P Time-dependentPrimitive Variables, nb

0 Equation residuals

Options[writeEquationResidual] =

{
codeform-> FortranAssign,

indent -» " " ,

tocode -» {}

};

writeEquationResidual::usage =

"writeEquationResidual[pde,pdeindex,output,options]:\n

Writes the equation residual for a given PDE

in code form. Options work as in Jacobian components routines.";

writeEquationResidual[pdein_, pdeindex_, output, options] :=

Module[

{
lhs, rhs, eqn,

MyCodeForm=codeform /. {options} /. Options[writeEquationResidual],

MyCodelndent= indent /. {options} /. Options[writeCodeSymbols],
MyToCode= tocode /. {options) /. Options[writeEquationResidual]

}.

pde = pdein;

If [output == 1 | | output == 3, Print ["F = ",pde, "\n"],];

lhs=StringJoin[MyCodelndent, "EQ0(", indicesEqns[[pdeindex, 1]], ",ind)
rhs = MyCodeFormfpde,

AssignBreak-» {1000, "\n &"},
Assignlndent -> " " ,

AssignOptimize -» False,
AssignPrecision-»Infinity,

AssignTemporary-» {"tmpO", Sequence}

][[i]] ;
MyToCode= Flatten[Append[MyToCode, {"\n", lhs, rhs}]];

If[FreeQ[{options}, tocode].

If [(output == 2 | | output == 3) , Print @@ MyToCode,] ,
Return[MyToCode]

];

];

Formulation-P Time-dependentPrimitive Variables, rtb 10

O Local components of the Jacobian

Options[jacobianLocalComponents] =

{
codeform-» FortranAssign,

indent -> " " ,

tocode -» { }

};

jacobianLocalComponents::usage =

"jacobianLocalComponentsfpde,pdeindex,vars,output,options]:\n

* 'pde' is the equation in symbolic form; '

pdeindex1 is the number of this PDE in the system of PDEs\n

* 'vars' is a list of all possible variables (unknowns)

which can occur in the equations\n

* 'output' is a flag which determines whether Mathematica summaries of

the components or actual code is written (1 • Mathematica only,

2 = code only, 3 = both); current settings generate Fortran code\n

* 'options' is a sequence of rules (not required)";

jacobianLocalComponents[pdein_, pdeindex , vars , output, options] :=

Module[

{
lhs, rhs,

MyCodeForm= codeform /. {options} /. Options[jacobianLocalComponents] ,
MyCodelndent= indent /. {options} /. Options[writeCodeSymbols],
MyToCode= tocode /. {options} /. Options[jacobianLocalComponents]

}.

pde = pdein//. jacobianldealGasRule;

Do[

var = vars[[k]];

tmpO = D[pde, var] ;

If [var = = = T, tmpl = LACPtD[pde, LACP] , tmpl = 0] ;

If [var = = = T, tmp2 = CPt D[pde, CP] , tmp2 = 0] ;

If [var = = = T, tmp3 = LACPttD[pde, LACPt] , tmp3 = 0] ;

If[var= = =T, tmp4 = CPtt D[pde, CPt] , tmp4 = 0] ;

If [var = = = YK, tmp5 = WMyD[pde, WM] , tmpS = 0] ;

DJ[pdeindex, k] =

((tmpO + tmpl + tmp2 + tmp3 + tmp4 + tmp5) // Expand) // . jacobianldealGasRestoreRuleE

If[
DJ[pdeindex, k] =1=0,

If [output == 1 | | output == 3,

Print["d F", ToString[pdeindex],

" / d (", vars[[k]], ") = ", DJ[pdeindex, k] , "\n"],];

Formulation-P Time-dependentPrimitiveVariables.nb \ 1

lhs = StringJoin[MyCodeIndent, "DJ(", indicesEqns[[pdeindex, 1]] ,

",", indicesVars[[k, 1]] , ",ind) = "];

rhs = MyCodeForm[DJ[pdeindex, k] ,

AssignBreak -> {1000, "\n &"},

Assignlndent -» "",

AssignOptimize -» False,

AssignPrecision->Infinity,

AssignTemporary-» {"tmpO", Sequence}

][[1]] I
MyToCode=Flatten[Append[MyToCode, {"\n", lhs, rhs}]];

, (* ELSE *)

];

, {k, Length[vars]}

]l

If[FreeQ[{options}, tocode],

If [(output =- 2 | | output == 3) , Print @@ MyToCode,] ,

Return[MyToCode]

]l

];

O Time derivative (diagonal) terms of the Jacobian

Options[j acobianTimeDerivatives] =

{

codeform -» FortranAssign,

indent -» " " ,

tocode -» {}

};

jacobianTimeDerivatives::usage =

"j acobianTimeDerivatives[pde,pdeindex,vars,output,options]:\n

* 'pde' is the equation in symbolic form; '

pdeindex1 is the number of this PDE in the system of PDEs\n

* 'vars1 is a list of all possible variables (unknowns)

which can occur in the equations\n

* 'output' is a flag which determines whether Mathematica summaries of

the components or actual code is written (1 = Mathematica only,

2 = code only, 3 = both); current settings generate Fortran code\n

* 'options' is a sequence of rules (not required)";

jacobianTimeDerivatives[pdein_, pdeindex_, vars_, output, options] :=

Module[

{

lhs, rhsl, rhs2,

MyCodeForm=codeform /. {options} /. Options[jacobianLocalComponents]

Formulation-P Time-dependentPrimitive Variables, nb 12

MyCodelndent=indent /. {options} /. Options[writeCodeSymbols],

MyToCode= tocode /. {options} /. Options[jacobianLocalComponents],

tders, tmptders

}.

tmptders • Outer[StringJoin, Map[ToString, vars], {"t"}] // Flatten;

tders • Map[ToExpression, tmptders];

Remove[tmptders];

pde = pdein //. jacobianldealGasRule;

Do[

tmp=D[pde, tders[[k]]];

DJT[pdeindex, k] = tmp / / . jacobianldealGasRestoreRules;

If[
DJT[pdeindex, k] =1=0,

If [output == 1 | | output == 3,

Print["d F", ToString[pdeindex],

" / d (", tders[[k]], ") = ", DJT[pdeindex, k] , "\n"],];

lhs = StringJoin[MyCodelndent, "DJ(", indicesEqnsf[pdeindex, 1]] ,

",", indicesVars[[k, 1]], ",ind) = "];

rhsl = StringJoin["DJ(", indicesEqns[[pdeindex, 1]] , ",",

indicesVars[[k, 1]], ",ind) + "];

rhs2 = MyCodeForm[DJT[pdeindex, k] ddt,

AssignBreak-» {1000, "\n &"}#

Assignlndent -» "",

AssignOptimize->False,

AssignPrecision-• Infinity,

AssignTemporary-» {"tmpO", Sequence}

][[i]] ;

MyToCode= Flatten[Append[MyToCode, {n\nn, lhs, rhsl, rhs2}]];

, (* ELSE *)

];

, {k, Length[vars]}

]i

If[FreeQ[{options}, tocode],

If [(output == 2 | | output == 3) , Print @@ MyToCode,] ,

Re turn[MyToCode]

];

];

O Spatial components of the Jacobian

Formulation-P Time-dependentPrimitive Variables, nb 13

Options[j acobianSpatialComponents] =

{
codeform-t FortranAssign,

indent -» " " ,

tocode -> {}

};

jacobianSpatialComponents::usage =

"jacobianSpatialComponents[pde,pdeindex,derivs,output,options]:\n

* 'pde' is the equation in symbolic form; '

pdeindex1 is the number of this PDE in the system of PDEs\n

* 'derivs1 is a list of all possible derivatives which can occur in the equations\n

* 'output' is a flag which determines whether Hathematica summaries
of the components or actual code is written (1 = Hathematica only,

2 = code only, 3 = both); current settings generate Fortran code\n
* 'options' is a sequence of rules (not required)";

Formulation-P Time-dependentPrimitive Variables, nb 14

jacobianSpatialComponents[pdein_, pdeindex_, derivs_, output_, options] :=

Module[

{
lhs, rhs, eqn,
MyCodeForm=codeform /. (options) /. Options[jacobianSpatialComponents],

MyCodelndent=indent /. {options} /. Options[writeCodeSymbols],

MyToCode= tocode /. {options} /. Options[jacobianSpatialComponents]

}.

pde = pdein//. jacobianldealGasRule;

Do[

tmp = D[pde, derivs[[k]]];

DQ[pdeindex, k] = tmp//. jacobianldealGasRestoreRules;

If[

DQ[pdeindex, k] =!= 0,

If [output == 1 | | output == 3,

Print["d F", ToString[pdeindex],

" / d (", derivs [[k]] , ») = ", DQ[pdeindex, k] , "\n"],];

lhs=StringJoin[MyCodelndent, "DQ(", indicesEqns[[pdeindex, 1]],

",", indicesDers[[k, 1]], ",ind) = '•];

rhs = MyCodeForm[DQ[pdeindex, k] ,

AssignBreak -» {1000, "\n &"},

Assignlndent-» "",

AssignOptimize -> False,

AssignPrecision-»Infinity,

AssignTemporary-» {"tmpO", Sequence}

][[!]] ;

MyToCode= Flatten[Append[MyToCode, {"\n", lhs, rhs}]];

, (* ELSE *)

]i

, {k, Length[derivs]}

];

If[FreeQ[{options}, tocode].

If [(output == 2 | | output == 3) , Print @@ MyToCode,] ,

Re turn[MyToCode]

];

];

Formulation-P Time-dependentPrimitive Variables, nb 15

RESIDUALS & JACOBIAN - INTERIOR POINTS

• Pressure

O Residuals

pde = ContinuityEquation;

pde = pde / . assumptionsRules// Expand;

pde = (r * pde) // Expand;

PDE[1] = toCodeNotation[pde] //. equationsIdealGasRules

Remove[pde];

Pt r RHO r RHO Tt Pr r RHO U r RHO Tr U
RHO U + + r RHO Ur +

P T P T
PzrRHOW rRHOTzW „„ r RHO U WM YKr r RHO WM YKt r RHO W WM YKz
 + r RHO Wz

WK WK WK

O Jacobian

jacobianLocalComponents[PDE[l] , 1, variables, 1] ;

jacobianTimeDerivatives[PDE[l] , 1, variables, 1] ;

jacobianSpatialComponents[PDE[l] , 1, derivatives, 1] ;

, . ,„, rRHOTt RHOU r RHO Tr U r RHO Ur
d Fl / d P = • +

PT P PT P
rRHOTzW rRHOWz r RHO U WM YKr r RHO WM YKt r RHO W WM YKz

P T P P WK P WK P WK

Pr r RHO r RHO Tr r RHO WM YKr
d Fl / d (U) = RHO • - +

d Fl / d (W)

d Fl / d (T)

WK

Pz r RHO r RHO Tz r RHO WM YKz
WK

PC r RHO 2 r RHO Tt RHO U Pr r RHO U 2 r RHO Tr U r RHO Ur
p T <p2 T p >p >J»2 >p

PzrRHOW 2 rRHOTzW rRHOWz r RHO U WM YKr r RHO WM YKt r RHO W WM YKz
P T T2 T T WK T WK T WK

j „, , j ,„„> Pt r RHO WM rRHOTtWM RHO U WM Pr r RHO U WM r RHO Tr U WM r RHO Ur WM
a Fl / a (YK) = + - - + -

P WK T WK WK P WK T WK WK

PzrRHOWWM rRHOTzWWM r RHO WM Wz 2 r RHO U WM2 YKr 2 r RHO WM2 YKt 2 r RHO W WM2 YKz
TWK WK

d Fl / d (Pt) = -^5.

d Fl / d (Tt) = -i^-

Formulation-P Time-dependentPrimitive Variables, nb \ 6

d Fl / d (YKt)

d Fl / d (Pr)

d Fl / d (Pz)

d Fl / d (Tr)

d Fl / d (Tz)

d Fl / d (YKr)

d Fl / d (YKz)

Radial velocity

o Residuals

r RHOWM
WK

rRHOU

r RHOW

d Fl / d (Ur) = r RHO

d Fl / d (Wz) = r RHO

r RHOU

r RHO W

r RHO U WM

r RHO W WM
WK

pde = NavierStokesEquation[[1]] ;

pde = pde / . assumptionsRules // FullSimplify // Expand;

pde s (r2 * pde) // Expand;

PDE[2] M toCodeNotation[pde] //. equationsIdealGasRules

Remove[pde];

, 4 LACP PR U 2 4 4 ,
Pr r2 + + — LACPt PR r Tr U LACP PR r Ur LACPt PR r2 Tr Ur

3 3 3 3

r2 RHO U Ur LACP PR r2 Urr + r2 RHO Ut - LACPt PR r2 Tz Uz - LACP PR r2 Uzz +

r2 RHO Uz W - LACPt PR r2 Tz Wr - — LACP PR r2 Wrz + — LACPt PR r2 Tr Wz

Formulation-P Time-dependentPrimitive Variables, nb 17

O Jacobian

jacobianLocalComponents[PDE[2] , 2, variables, 1];

jacobianTimeDerivatives[PDE[2] , 2, variables, 1] ;

jacobianSpatialComponents[PDE[2] , 2, derivatives, 1]

j „„ , J ,„, r2RHOUUr r2 RHO Ut r2 RHO Uz W
d F2 / d (P) = + +

4 LACP PR 2
d F2 / d (U) = + — LACPt PR r Tr + r2 RHO Ur

d F2 / d (W) = r2 RHOUz

4 LACPt PR U 2 4
d F2 /d (T) = * — LACPCt PR r Tr U - — LACPt PR r Ur -

4 , r2 RHO U Ur 4 , r2 RHO Ut ,
— LACPtt PR r2 Tr Ur — LACPt PR r2 Urr LACPtt PR r2 Tz Uz - 3 T 3 T

r2 RHO Uz W 12
LACPt PR r2 Uzz LACPtt PR r2 TzWr-- LACPt PR r2 Wrz + — LACPtt PR r2 Tr Wz

,.,„„, r2 RHO UUrWM r2 RHO Ut WM r2 RHO Uz W WM
d " ' d lYK> = WK WK WK

d F2 / d (Ut) = r2 RHO

d F2 / d (Pr) = r2

d F2 / d (Ur) = -— LACP PR r - — LACPt PR r2 Tr + r2 RHO U

d F2 / d (Uz) = -LACPt PR r2 Tz + r2 RHO W

d F2 / d (Urr) = - -i- LACP PR r2

d F2 / d (Uzz) = -LACP PR r2

d F2 / d (Wr) = -LACPt PR r2 Tz

d F2 / d (Wz) = ~ LACPt PR r2 Tr

d F2 / d (Wrz) = --i- LACP PR r2

2 4 2
d F2 / d (Tr) = — LACPt PR r U - -^ LACPt PR r2 Ur » — LACPt PR r2 Wz

d F2 / d (Tz) = -LACPt PR r2 Uz - LACPt PR r2 Wr

Formulation-P Time-dependentPrimitive Variables, nb 18

Axial velocity

O Residuals

pde • NavierStokesEquation[[3]] ;

pde = pde / . assumptionsRules // FullSimplify // Expand;

pde = (r * pde) // Expand;

PDE[3] = toCodeNotation[pde] //. equationsIdealGasRules

Remove[pde];

2 2 1
Pz r - GZ r RHO + — LACPt PR Tz U + — LACPt PR r Tz Ur - — LACP PR r Urz -

LACP PR Uz
 LACPt PR r Tr Uz - LACP PR Wr - LACPt PR r Tr Wr + r RHO U Wr

4 4
LACP PR r Wrr + r RHO Wt LACPt PR r Tz Wz + r RHO W Wz LACP PR r Wzz

3 3

Formulation-P Time-dependentPrimitive Variables, nb 19

o Jacobian

jacobianLocalComponents[PDE[3] , 3, variables, 1];

jacobianTimeDerivatives[PDE[3] , 3, variables, 1];

jacobianSpatialComponents[PDE[3] , 3, derivatives, 1] ;

GZ r RHO r RHO U Wr r RHO Wt r RHO W Wz
d F3 / d (P) = • • 5 •

d F3 / d (U) = 2 LACPt PR Tz , r ^ Wr

d F3 / d (W) = r RHO Wz

GZ r RHO 2 2
d F3 / d (T) = + — LACPtt PR Tz U + — LACPtt PR r Tz Ur -

•i- LACPC PR r Urz - LACPt PRUz . LACPtt PR r Tr Uz - LACPt PR Wr - LACPtt PR r Tr Wr -

rRHOUWr r RHO Wt 4 rRHOWWz 4
LACPt PR r Wrr = -=r LACPtt PR r Tz Wz = — LACPt PR r Wzz T T3 T 3

GZrRHOWM rRHOUWMWr r RHO WM Wt r RHO W WM Wz
d F3 / d (YK) =

WK WK WK WK

d F3 / d (Wt) = r RHO

d F3 / d (Pz) = r

d F3 / d (Ur) = —LACPt PR r Tz

LACP PR
d F3 / d (Uz) = LACPt PR r Tr

d F3 / d (Urz) = --i-LACPPRr

d F3 / d (Wr) = -LACP PR - LACPt PR r Tr + r RHO U

d F3 / d (Wz) = -— LACPt PR r Tz • r RHO W

d F3 / d (Wrr) = -LACP PR r

4
d F3 / d (Wzz) = -—LACP PR r

d F3 / d (Tr) = -LACPt PR r Uz - LACPt PR r Wr

2 LACPt PR U 2 4
d F3 Id (Tz) = • — LACPt PR r Ur - — LACPt PR r Wz

Formulation-P Time-dependentPrimitiveVariables.nb 20

Temperature

O Residuals

pde = EnergyEquation;

pde = pde / . assumptionsRules // Expand;

pde = (r * pde) // Expand;

PDE[4] = toCodeNotation[pde] //. equationsIdealGasRules

Remove[pde];

HEAT r CPt LACP r Tr2 ,
 LACP Tr LACPt r Tr2 - LACP r Trr +

CP CP
CPt LACP r Tz2

r RHO Tt LACPt r Tz2 - LACP r Tzz + r RHO Tr U + r RHO Tz W
CP

Formulation-P Time-dependentPrimitive Variables, nb 21

O Jacobian

jacobianLocalComponents[PDE[4] , 4, variables, 1) ;

jacobianTimeDerivatives[PDE[4] , 4, variables, 1] ;

jacobianSpatialComponents[PDE[4] , 4, derivatives, 1] ;

. „ ,_,,„, rRHOTt rRHOTrU rRHOTzW
d F4 / d (P) = - + +

d F4 / d (U) = r RHOTr

d F4 / d (W) = r RHOTz

, . m CPtHEATr .. CPt
2 LACP r Tr2 CPttLACPrTr2

d F4 / d (T) = = LACPt Tr <
CP2 CP2 CP

CPt LACPt rTr2 _ „__ _ , rRHOTt CPt2 LACP r Tz2

LACPt t r Tr2 - LACPt r Trr
CP T CP2

CPttLACPrTz2 CPt LACPt r Tz2 , r RHO Tr U r RHO Tz W
 = -= LACPtt r Tz2 - LACPt r Tzz CP CP T T

d (YK\ r RHO Tt WM r RHO TrUWM r RHO TzWHM
(' WK WK " WK

d F4 / d (Tt) = r RHO

2 CPt LACP r TIT
d F4 / d (Tr) = -LACP — 2 LACPt r Tr + r RHO U

2 CPt LACP r Tz
d F4 / d (Tz) = — 2 LACPt r Tz * r RHO W

d F4 / d (Trr) = -LACP r

d F4 / d (Tzz) = -LACP r

Formulation-P Time-dependentPrimitive Variables, nb 22

• Species

o Residuals

pde = SpeciesConservation;

pde = pde / . assumptionsRules // Expand;

pde = (r * pde) // Expand;

PDE[5] = toCodeNotation[pde] //. equationsIdealGasRules

Remove[pde];

Pr r RHO UC YK r RHO Tr UC YK
- r SOURCE + RHO UC YK + + r RHO UCr YK +

P T
PzrRHOWCYK r RHO Tz WC YK „„„,,„ ,„, LACP YKr LACPt r Tr YKr

+ r RHO WCz YK -
P T LEk LEk

r RHO U YKr + r RHO UC YKr + r RH° UC "M YK YKr - LACP * YKrr + r RHO YKt -
WK LEk

LACPt rTzYKz „ „„«„„,,,, r RHO WC WM YK YKz LACPrYKzz
r RHO W YKz + r RHO WC YKz +

LEk WK LEk

O Jacobian

jacobianLocalComponents[PDE[5] , 5, variables, 1] ;

jacobianTimeDerivatives[PDE[5] , 5, variables, 1] ;

jacobianSpatialComponents[PDE[5] , 5, derivatives, 1] ;

d F5 / d (P) =
RHO UC YK r RHO Tr UC YK r RHO UCr YK r RHO Tz WC YK r RHO WCz YK r RHO U YKr

P PT P PT P P
r RHO UC YKr r RHO UC WM YK YKr r RHO YKt r RHO W YKz r RHO WC YKz r RHO WC WM YK YKz

d F5 / d (U) = r RHO YKr

d F5 / d (W)

d F5 / d {Tj
RHO UC YK Pr r RHO UC YK 2 r RHO Tr UC YK r RHO UCr YK

<-n P T T^ T
PzrRHOWCYK 2 r RHO Tz WC YK r RHO WCz YK LACPt YKr LACPttrTrYKr

P T T2 T LEk LEk
r RHO U YKr rRHOUCYKr r RHO UC WM YK YKr LACPt r YKrr r RHO YKt

T T T WK LEk T
LACPttrTzYKz r RHO W YKz r RHO WC YKz r RHO WC WM YK YKz LACPt r YKzz

LEk T T TWK LEk

d F5 / d ,YK) = RHOUC, ^ r RHO UC _ r RHO^Tr UC ^ f ^ ^ ^ Pz r RHO WC _

rRHOTzWC _.,„,._ RHOUCWMYK Pr r RHO UC WM YK r RHO Tr UC WM YK
+ r RHO WCz •

T WK P WK T WK
r RHO UCr WM YK Pz r RHO WC WM YK r RHO Tz WC WM YK rRHOWCzWMYK r RHO U WM YKr

WK PWK TWK WK WK
2 r RHO UC WM2 YK YKr r RHO WM YKt r RHO W WM YKz 2 r RHO WC WM2 YK YKz

d F5 / d (YKt)

Formulation-P Time-dependentPrimitiveVariables.nb 23

„ „,. , J ,,< , rRHOUCYK d F5 / d (Pr) =

j „„ , J ,r, rRHOWCYK d F5 / d (Pz) =

r RHO UC YK LACPt r YKr
d F5 / d (Tr) =

LEk

. „r , . _ . rRHOWCYK LACPt r YKz d F5 / d (Tz) =
LEk

. „,. , . ,„„ , LACP LACPt rTr „ .„„ r RHO UC WM YK
d F5 / d (YKr) = -—g- -j—.rRHOU-rRHOUC

dF5/d(YKz, = _LACPtrTz trRHOW,rRHQWC+ rRHOWCWMYK
LEK. WK

LACP r
d F5 / d (YKrr) = - -jgj-

d F5 / d (YKzz) = -^^L

RESIDUALS & JACOBIAN - INLET BOUNDARY

RESIDUALS & JACOBIAN - AXIS OF SYMMETRY

RESIDUALS & JACOBIAN - WALL BOUNDARY

RESIDUALS & JACOBIAN - OUTLET BOUNDARY

Output code material for point.f90

Output code material for orj.f

APPENDIX II:

Fortran Code for

RESIDUALS and JACOBIAN Subroutines

of the Implicit-Compact Solver

(partial listing of a code created using the
software tool presented in Appendix I)

%00
%%%%%««^«^^*«««^-S-S-S-6-S%-S-S-S:B-S-S-S%-S%-S-S-6%%%%%%%%%%%%'S-S-S'S-S-S-S-S;S-S-S%%%'o%'5%%%%%%%%%%%%%%

%% %%
%% %%
%% RESIDUALS %%
%% %%
%%%

SUBROUTINE RESIDUALS (ISTEP)

USE DimensioningParameters
USE ProblemParameters
USE MethodParameters, ONLY : iDSPACE,iDTIME, &

& TFLOW,DTO,DTI,DT2, &
& KVFIX, NFIX
USE Pointers
USE DiscretizedProblem , ONLY : NVAR, NSP, NR, NZ, NODES, NEL, &

& RI, ZJ, &
& SF, S, SI, S2, SX, &
& SD, &
& EQO, EQ1, CT, F, SB1, &
& VELinlet
USE Differentiation
USE OneStepChemistry_Methane
USE SimplifiedTransport
USE Time_IO_Debug, ONLY : WTRES

IMPLICIT DOUBLE PRECISION (A-H.O-Z)

double precision dSdt(NVAR_P,NODES_P)

double precision YK(NSP_P), YKt(NSP_P), YKinlet(NSP_P)
double precision YKr(NSP_P), YKz(NSP_P), YKrr(NSP_P), YKzz(NSP_P)

double precision LACP, LACPt, LEK(NSP_P), DK(NSP_P), DKt(NSP_P), &
! stoichiometric coeffs (# mols produced/destroyed)

& NUK(NSP_P), &
! mass coeffs: NUK(k)*WK(k)

& NUKWK(NSP_P), &
& WK(NSP_P), SOURCE(NSP_P)

save isavsd ! should be initialized to zero by compiler
save igetrsf ! should be initialized to zero by compiler
save ioutflag

! upwinding
double precision CONVRDER(NVAR_P,NODES_P),CONVZDER(NVAR_P,NODES_P)

double precision CONVECT(NVAR_P)

! upwinding
iUPWIND =1 ! 1 = upwind; 2 = 2nd order centered (convective terms)

timephase = 2*PI*TFLOW/Period

INITIALIZATION

call DZERO(F,NEL)
call DZERO(EQ0,NEL)
call DZERO(dSdt,NEL)
call DZERO(CT,NEL)

.upwinding
call DZERO(CONVRDER,NEL)
call DZERO(CONVZDER,NEL)
call DZERO(CONVECT,NVAR)

if (iSTEP.eq.O) then
call DZERO(EQl,NEL)

endif

SPATIAL DERIVATIVES

if (iDSPACE.eq.1) then
call SPATIAL_LO (S)

else
call SPATIAL_CS (S)

endif

RESIDUAL - INTERIOR NODES

DO j = 2 NZ-1
DO i = 2 NR-1

ind = (j-1)*NR + i

r = RI(i)

PO = AtmPressure
P2 = S(MvarP,ind)
P = PO + P2

P = PO

U = S(MvarU ,ind)
W = S(MvarW ,ind)
T = S(MvarT ,ind)
YK = S(MvarYK,ind)

Pr = SD(KderPr ,ind)
Pz = SD(KderPz ,ind)
Ur = SD(KderUr ,ind)
Uz = SD(KderUz ,ind)
Urr = SD(KderUrr , ind)
Uzz = SD(KderUzz ,ind)
Urz = SD(KderUrz ,ind)
Wr = SD(KderWr ,ind)

Wz
Wrr
Wzz
Wrz
Tr
Tz
Trr
Tzz
YKr
YKz
YKrr
YKzz

Pt =
Ut =
Wt =
Tt =
YKt =

SD(KderWz ,
SD(KderWrr ,
SD(KderWzz ,
SD(KderWrz ,
SD(KderTr ,
SD(KderTz
SD(KderTrr ,
SD(KderTzz ,
SD(KderYKr ,
SD(KderYKz ,
SD(KderYKrr,
SD(KderYKzz,

ind)
ind)
ind)
ind)
ind)
ind)
ind)
ind)
ind)
ind)
ind)
ind)

O.dO
O.dO
O.dO
O.dO
O.dO

set to zero here when computing EQO
set to zero here when computing EQO
set to zero here when computing EQO
set to zero here when computing EQO
set to zero here when computing EQO

WK = MolecularWeights
WM = MixtureWeight (YK, WK)
RHO = P*WM/(RU*T)
PDYN = P2
GZ = GRAV

CP
CPt
LACP
LACPt
PRN
LEK

DK
DKt
UC
UCr
wc
WCz

NUK
NUKWK

! (nu_0
sstoich
Yfuel
Yox
Yfuel_F
Yox_A
Z
PHI
omega
SOURCE

q
HEAT

= SpecificHeat(T)
= 0 .do
= LambdaCp(T)
= LambdaCp_ddT(T)
= PrandtlNumber
= LewisNumbers

SpecificHeat_ddT(T)
lambda/Cp
d(lambda/Cp)/dT

LACP/(LEK*RHO)
LACPt/(LEK*RHO)+LACP/(LEK*RHO*T)
dot_product(DK,YKr) ! correction vel. for mass conservation
dot_product(DK,YKrr)+dot_product((DKt*Tr),YKr)
dot_product(DK,YKz) ! correction vel. for mass conservation
dot_product(DK,YKzz)+dot_product((DKt*Tz),YKz)

= SignedStoichiometricCoeffs
= NUK*WK
Wk_0)/(nu_F * Wk_F) @ stoichiometric conditions
NUKWK(2)/NUKWK(1)
YK(1)
YK(2)
l.dO ! mass fraction of fuel in the Fuel Stream
0.232d0 ! mass fraction of oxydizer in the Air Stream
Z_mixfrac(sstoich, Yfuel, Yox, Yfuel_F, Yox_A)
PHI_equivratio (Z, Yfuel_F, Yox_A)
MolarProductionRate(PHI, RHO, YK, Wk, T)
(NUKWK/abs(NUK(l))) * omega
HeatReleasePerMole(PHI)
q * omega

density gradients, time derivative

RHOrP = (Pr*r*RHO*U)/P

RHOrT = -(r*RHO*Tr*U)/T
RHOrY = sum(((r*RHO*U*WM*YKr)/WK))

RHOr = RHOrP+RHOrT+RHOrY

RHOzP = (Pz*r*RHO*W)/P
RHOzT = -(r*RHO*Tz*W)/T
RHOzY = sum(((r*RHO*W*WM*YKz)/WK))

RHOz = RHOzP+RHOzT+RHOzY

RHOt = O.dO ! leave off time terms till later.

convective terms

CONVECT(MeqnP)
CONVECT(MeqnU)
CONVECT(MeqnW)
CONVECT(MeqnT)
CONVECT(MeqnYK)

(U*RHOr + W*RHOz) * r
= RHO*(U*Ur + W*Uz) * r**2
= RHO*(U*Wr + W*Wz) * r
= RHO*(U*Tr + W*Tz) * r
= RHO*(U*YKr + W*YKz) * r

if (iUPWIND.eq.1 .and. iDSPACE.eq.1) then
call UPWIND(ind,i,j,r,RHO,CONVRDER,CONVZDER,CONVECT)\

endif

steady part of the residuals

£
S

EQO(MeqnP ,ind)

EQ0(MeqnU ,ind)

EQO(MeqnW ,ind)

EQ0(MeqnT ,ind) =

EQO(MeqnYK,ind)

r*RHOt+RHO*U+r*RHO*Ur+r*RHO*Wz+CONVECT(MeqnP)

(4*LACP*PRN*U)/3.d0+(2*LACPt*PRN*r*Tr*U)/3.d0 &
-(4*LACP*PRN*r*Ur)/3.dO+Pr*(r*r) &
-(4*LACPt*PRN*Tr*Ur*(r*r))/3.dO &
-(4*LACP*PRN*Urr*(r*r))/3.dO+RHO*Ut*(r*r) &
-LACPt*PRN*Tz*Uz*(r*r)-LACP*PRN*Uzz*(r*r) &
-LACPt*PRN*Tz*Wr*(r*r) &
-(LACP*PRN*Wrz*(r*r))/3.dO &
+(2*LACPt*PRN*Tr*Wz*(r*r))/3.dO &
+CONVECT(MeqnU)

Pz*r-GZ*r*RHO+(2*LACPt*PRN*Tz*U)/3.dO &
+(2*LACPt*PRN*r*Tz*Ur)/3.dO-(LACP*PRN*r*Urz)/3.dO &
-(LACP*PRN*Uz)/3.dO-LACPt*PRN*r*Tr*Uz-LACP*PRN*Wr &
-LACPt*PRN*r*Tr*Wr-LACP*PRN*r*Wrr &
+r*RHO*Wt-(4*LACPt*PRN*r*Tz*Wz)/3.dO &
-(4*LACP*PRN*r*Wzz)/3.dO &
+CONVECT(MeqnW)

-((HEAT*r)/CP)-LACP*Tr-LACP*r*Trr+r*RHO*Tt &
-LACP*r*Tzz &
-(CPt*LACP*r*(Tr*Tr))/CP-LACPt*r*(Tr*Tr) &
-(CPt*LACP*r*(Tz*Tz))/CP-LACPt*r*(Tz*Tz) &
+CONVECT(MeqnT)

-(r*SOURCE)+RHO*UC*YK+r*RHOr*UC*YK+r*RHO*UCr*YK &
+r*RHOz*WC*YK+r*RHO*WCz*YK-(LACP*YKr)/LEK &
-(LACPt*r*Tr*YKr)/LEK+r*RHO*UC*YKr &

& -(LACP*r*YKrr)/LEK+r*RHO*YKt-(LACPt*r*Tz*YKz)/LEK &
& +r*RHO*WC*YKz-(LACP*r*YKzz)/LEK &
& +CONVECT(MeqnYK)

ENDDO
ENDDO

RESIDUAL - BOUNDARY NODES

CONDITIONS AT THE INLET: BOUNDARY 1

j = 1

DO i = 2 , NR

ind = (j-1)*NR + i

r = RI (i)

PO = AtmPressure
P2 = S(MvarP,ind)
P = PO + P2

P = PO

u = S(MvarU ind)
w = S(MvarW ind)
T = S(MvarT ind)
YK = S(MvarYK ind)

Pz = SD(KderPz , ind)
Ur = SD(KderUr ,ind)
Uz = SD(KderUz ,ind)
Urz = SD(KderUrz ,ind)
Wr = SD(KderWr ,ind)
Wz = SD(KderWz ,ind)
Wrr = SD(KderWrr ,ind)
Wzz = SD(KderWzz ,ind)
Tr = SD(KderTr ,ind)
Tz = SD(KderTz ,ind)

Wt = O.dO
if (iDTIME.gt.l)

Wt = VELinlet(i)*MODULATION*2*PI/PERIOD*cos(timephase)

WK = MolecularWeights
WM = MixtureWeight (YK, WK)
RHO = P*WM/(RU*T)
PDYN = P2
GZ = GRAV

LACP = LambdaCp(T) ! lambda/Cp
LACPt = LambdaCp_ddT(T) ! d(lambda/Cp)/dT
PRN = PrandtlNumber

Winlet = SB1(MvarW ,i)

I

I ;

I

Tinlet = SB1(MvarT ,i)
YKinlet = SB1(MvarYK,i)

EQO(MeqnP ,ind) = Pz*r-GZ*r*RHO+(2*LACPt*PRN*Tz*U)/3.do &
& +(2*LACPt*PRN*r*Tz*Ur)/3.d0-(LACP*PRN*r*Urz)/3.dO &
& -(LACP*PRN*Uz)/3.dO-LACPt*PRN*r*Tr*Uz-LACP*PRN*Wr &
& -LACPt*PRN*r*Tr*Wr+r*RHO*U*Wr-LACP*PRN*r*Wrr &
Sc +r*RHO+Wt-(4*LACPt*PRN*r*Tz*Wz)/3.dO+r*RHO*W*Wz &
& -(4*LACP*PRN*r*Wzz)/3.d0

EQO(MeqnU ,ind) = U
EQO(MeqnW ,ind) = W-Winlet
EQO(MeqnT ,ind) = T-Tinlet
EQO(MeqnYK,ind) = YK-YKinlet

ENDDO

..Special treatment (for pressure BC) at symmetry-inlet corner pt
i =1
ind = 1
U = S(MvarU , ind)
W = S(MvarW , ind)
T = S(MvarT , ind)
YK = S(MvarYK , ind)
Pr = SD(KderPr , ind)
Winlet = SB1(MvarW ,i)
Tinlet SB1(MvarT ,i)
YKinlet = SB1(MvarYK,i)
EQO(MeqnP ,ind) = Pr
EQO(MeqnU , ind) = U
EQO(MeqnW , ind) = W-Winlet
EQO(MeqnT , ind) = T-Tinlet
EQO(MeqnYf C, ind) = YK-YKinlet

CUT

TIME-DERIVATIVES

iDTIME=0 : STEADY STATE - NO TIME DERIVATIVE TERMS

IF (iDTIME.eq.0) THEN

do ind = 1,nodes
do keq = l.nvar

F(keq,ind) = EQO(keq,ind)
enddo
enddo

goto 999

iDTIME=l : BACKWARD EULER DISCRETIZATION IN PSEUDO-TIME

ELSEIF (iDTIME.eq.1) THEN

! INTERIOR POINTS

do j=2,NZ-l
do i=2,NR-l

ind = (j-1)*NR+i

r = RI(i)

PO = AtmPressure
P2 = S(MvarP,ind)
P = PO + P2

P = PO

T = S(MvarT ,ind)
YK = S(MvarYK ,ind)

WK = MolecularWeights
WM = MixtureWeight (YK, WK)
RHO = P*WM/(RU*T)

CT(2,ind) = RHO * r**2
CT(3,ind) = RHO * r
CT(4,ind) = RHO * r
do k = 1,NSP

CT(4+k,ind) = RHO * r
enddo

Pt = (S(MvarP ,ind)-SI(MvarP ,ind))/DTO
Tt = (S(MvarT ,ind)-SI(MvarT ,ind))/DTO
YKt = (S(MvarYK,ind)-SI(MvarYK,ind))/DTO
RHOtP = (Pt*r*RHO)/P
RHOtT = -(r*RHO*Tt)/T
RHOtY = sum(((r*RHO*WM*YKt)/WK))
RHOt = RHOtP ! +RHOtT+RHOtY
F(MvarP,ind) = RHOt + EQO(MvarP,ind)
do k = 2,NVAR

dSdt(k,ind) = (S(k,ind)-SI(k,ind))/DTO
F(k,ind) = CT(k,ind) * dSdt(k,ind) + EQO(k,ind)

enddo

enddo
enddo

CUT

SOME VARIABLES MAY BE FIXED

999 continue

if (KVFIX.gt.O) then
do ind=l,NODES

do k=l,NVAR
if (NFIX(k).eq.1) then

F (k, ind) =S (k, ind) -SX (k, ind)
EQ0(k,ind) = O.dO

endif
enddo

enddo
endif

monitor norms of steady and unsteady residuals

call NORM2(NEL,EQO,eqOnrm)
call NORM2(NEL,F, fnrm)
dnel=sqrt(dble(NEL))
fnrm=fnrm/dnel
eqOnrm=eqOnrm/dnel

if (iSTEP.ne.-1) then
write (6,*) ' @@@ eqOnrm = ',eqOnrm
write (6,*) '@@@ fnrm = ', fnrm
write (16,*) '@@@ eqOnrm = ',eqOnrm
write (16,*) '@@@ fnrm = ', fnrm

endif

RETURN
END

%%
%%

%%
%%
%%

JACOBIAN

%%%

SUBROUTINE JACOBIAN

USE DimensioningParameters
USE ProblemParameters
USE MethodParameters, ONLY

USE Pointers
USE DiscretizedProblem

&
&

&
&

iDSPACE,iDTIME,
TFLOW,DTO,DT1,DT2,
iMATVEC,
KVFIX, NFIX

ONLY : NVAR, NSP, NR, NZ, NODES, NEL,
NDRTP,
RI, ZJ,
SF, S, SI, S2, SX,
SD,
DJ, DQ, CTDJ, F,
VELinlet

USE Differentiation
USE OneStepChemistry_Methane
USE SimplifiedTransport
USE Time_IO_Debug, ONLY : CPUREST, SECONDM

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

double precision YK(NSP_P), YKt(NSP_P), YKinlet(NSP_P)
double precision YKr(NSP_P), YKz(NSP_P), YKrr(NSP_P), YKzz(NSP_P)

double precision LACP, LACPt, LACPtt, LEK(NSP_P), DK(NSP_P), DKt(NSP_P)
! stoichiometric coeffs (# mols produced/destroyed)

& NUK(NSP_P),
! mass coeffs: NUK(k)*WK(k)

& NUKWK(NSP_P),
& WK(NSP_P), SOURCE(NSP_P), SOURCEp(NSP_P),
& SOURCEt(NSP_P), SOURCEy(NSP_P,NSP_P), HEATy(NSP_P),
& omegay(NSP_P)

double precision DSPERT(NODES_P), SHOLD(NVAR_P,NODES_P)
double precision FO(NVAR_P,NODES_P)

iNumericalDJ =1 ! 1 - numerical, 0 - analytical

timephase = 2*PI*TFL0W/Period

&
&
&
&
s
s

INITIALIZE

NDJ = NVAR_P*NVAR_P*NODES_P ! size of array DJ
NDQ = NVAR_P*LDQ_P*NODES_P ! size of array DQ

call DZERO(DJ,NDJ)
call DZERO(DJN,NDJ) ! numerical DJ

call DZERO(DQ,NDQ)
call DZERO(CTDJ,NEL)

if (iDTIME.eq.0) then
! NO TIME DERIVATIVES: steady-state solve

elseif (iDTIME.eq.1) then
ddt=l.D0/DT0 ! pseudo-time Implicit Euler

elseif (iDTIME.eq.2) then
ddt=l.D0/DT0 ! time-dependent Implicit Euler

elseif (iDTIME.eq.3) then
ddt=l.D0/DT0 ! time-dependent Crank-Nicolson

elseif (iDTIME.eq.4) then
ddt=3.DO/(2.d0*DT0)! time-dependent 2nd order BDF

else
write(*,*) 'STOP: other time discrets. not yet implemented1

stop
endif

NUMERICAL DJ

IF (iNumericalDJ.eq.l) THEN

call RESIDUALS (-1)

F0 = F ! save initial residual
SHOLD = S ! save current solution S

DO kvar = 1,NVAR

DO j =2, NZ-1
DO i = 2, NR-1

ind = (j-1)*NR+i
tmp = S(kvar,ind)
DSPERT(ind) = tmp*l.d-8 + l.d-8
S(kvar,ind) = tmp + DSPERT(ind)

ENDDO
ENDDO

call RESIDUALS (-1) ! compute perturbed residual

DO j = 2, NZ-1
DO i = 2, NR-1
ind = (j-1)*NR+i
DO keqn = 1,NVAR

DJ(keqn,kvar,ind)=(F(keqn,ind)-F0(keqn,ind))/DSPERT(ind)
ENDDO
ENDDO
ENDDO

S = SHOLD

ENDDO
call RESIDUALS (-1)

ENDIF

SPATIAL DERIVATIVES

if (iDSPACE.eq.1) then ! LO method
call SPATIAL_LO (S)

else
call SPATIAL_CS (S)

endif

JACOBIAN INTERIOR NODES

DO j = 2, NZ-1
DO i = 2, NR-1

ind = (j-1)*NR + i

r = RI(i)

PO = AtmPressure
P2 = S(MvarP,ind)
P = PO + P2

P = PO

u = S(MvarU , ind)
w = S(MvarW ind)
T = S(MvarT ind)
YK = SfMvarYK , ind)

Pr = SD(KderPr ,ind)
Pz = SD(KderPz ,ind)
Ur = SD(KderUr , ind)
Uz = SD(KderUz , ind)
Urr = SD(KderUrr ,ind)
Uzz = SD(KderUzz ,ind)
Urz = SD(KderUrz ,ind)
Wr = SDfKderWr ,ind)
Wz = SD(KderWz ,ind)
Wrr = SD(KderWrr ,ind)
Wzz = SD(KderWzz ,ind)
Wrz = SD(KderWrz , ind)
Tr SD(KderTr ,ind)
Tz = SD(KderTz , ind)
Trr = SD(KderTrr , ind)
Tzz = SD(KderTzz ,ind)
YKr = SD(KderYKr ,ind)
YKz = SD(KderYKz , ind)
YKrr = SD(KderYKri ,ind)
YKzz = SD(KderYKzz , ind)

time derivatives
Pt = O.dO
Ut = O.dO

Wt = O.dO
Tt = O.dO
YKt = O.dO
IF (iDTIME.ge.l

ddt*(S(MvarP
ddt*(S(MvarU
ddt*(S(MvarW
ddt*(S(MvarT

.and. iDTIME.le.3) THEN
,ind)-SI(MvarP ,ind)
,ind)-SI(MvarU ,ind)
,ind)-SI(MvarW ,ind)
,ind)-SI(MvarT ,ind)

ps-time IE, IE, CN
Pt =
Ut =
Wt =
Tt =
YKt = ddt*(S(MvarYK,ind)-SI(MvarYK,ind)

ELSEIF (iDTIME.eq.4) THEN
Pt = 0.5d0/DT0*(3.dO*S(MvarP

+l.d0*S2(MvarP ,ind))
Ut = 0.5d0/DT0*(3.dO*S(MvarU

+l.dO*S2(MvarU ,ind)
Wt = 0.5d0/DT0*(3.dO*S(MvarW

+1.dO*S2(MvarW ,ind)
0.5d0/DT0*(3.dO*S(MvarT
+l.dO*S2(MvarT ,ind))

0.5d0/DT0*(3.dO*S(MvarYK,ind
+1.d0*S2(MvarYK ,ind))

Tt

YKt

! BDF2
ind) -4 dO*Sl(MvarP ind)

ind) -4 dO*Sl(MvarU ind)

ind) -4 dO*Sl(MvarW ind)

ind) -4 .dO*Sl(MvarT , ind)

•4.dO*Sl(MvarYK,ind)

END IF

WK = MolecularWeights
WM = MixtureWeight (YK,
RHO = P*WM/(RU*T)
PDYN = P2
GZ = GRAV

WK)

CP = SpecificHeat(T)
CPt = O.dO
CPtt = O.dO
LACP = LambdaCp(T)
LACPt = LambdaCp_ddT(T)
LACPtt = LambdaCp_d2dT2(T)
PRN = PrandtlNumber
LEK = LewisNumbers

SpecificHeat_ddT(T)
SpecificHeat_d2dT2(T)
lambda/Cp
d(lambda/Cp)/dT
d2(lambda/Cp)/dT2

DK = LACP/(LEK*RHO)
DKt = LACPt/(LEK*RHO)+LACP/(LEK*RHO*T)
UC = dot_product(DK,YKr) ! correction vel. for mass conservation
UCr = dot_product(DK,YKrr)+dot_product((DKt*Tr),YKr)
WC = dot_product(DK,YKz) ! correction vel. for mass conservation
WCz = dot_product(DK,YKzz)+dot_product((DKt*Tz),YKz)

NUK = SignedStoichiometricCoeffs
NUKWK = NUK*WK

! (nu_0 * Wk_0)/(nu_F * Wk_F) @ stoichiometric conditions
sstoich = NUKWK(2)/NUKWK(1)
Yfuel = YK(1)
Yox = YK(2)
Yfuel_F = l.dO ! mass fraction of fuel in the Fuel Stream
Yox_A = 0.232d0 ! mass fraction of oxydizer in the Air Stream
Z = Z_mixfrac(sstoich, Yfuel, Yox, Yfuel_F, Yox_A)
PHI = PHI_equivratio (Z, Yfuel_F, Yox_A)
omega = MolarProductionRate(PHI, RHO, YK, Wk, T)
omegap = MolarProductionRate_ddP(PHI, RHO, YK, Wk, T)
omegat = MolarProductionRate_ddT(PHI, RHO, YK, Wk, T)

omegay = MolarProductionRate_ddYK(PHI, RHO, YK, Wk, T)
SOURCE = (NUKWK/abs(NUK(l))) * omega
SOURCEp = (NUKWK/abs(NUK(l))) * omegap
SOURCEt = (NUKWK/abs(NUK(l))) * omegat
! outer product of NUWK * (omegay)*T
SOURCEy = spread((NUKWK/abs(NUK(l))),2,NSP_P)*spread(omegay,1,NSP_P)
q = HeatReleasePerMole(PHI)
HEAT = q * omega
HEATp = q * omegap
HEATt = q * omegat
HEATy = q * omegay

LOCAL COMPONENTS MAIN BLOCK DIAGONAL

IF (iNumericalDJ.ne.1) THEN

.Analytical DJ

DJ(MeqnP ,MvarP ind)

&

&
&

&

S
&
&
&
&
s

s
&
&
&

s

&
&
&
&
s
&

DJ(MeqnP ,MvarU ,ind)

DJ(MeqnP ,MvarW ,ind)

DJfMeqnP ,MvarT ,ind)

DJ(MeqnP ,MvarYK,ind) =

DJ(MeqnU ,MvarP ,ind)

DJ(MeqnU ,MvarU , ind)

DJ(MeqnU ,MvarW ,ind)
DJ(MeqnU ,MvarT ,ind)

-((r*RHO*Tt)/(P*T))+(RHO*U)/P
-(r*RHO*Tr*U)/(P*T)+(r*RHO*Ur)/P
-(r*RHO*Tz*W)/(P*T)+(r*RHO*Wz)/P
+sum(((r*RHO*U*WM*YKr)/(P*WK)))
+sum(((r*RHO*WM*YKt)/(P*WK)))
+sum(((r*RHO*W*WM*YKz)/(P*WK)))

RHO+(Pr*r*RHO)/P-(r*RHO*Tr)/T
+sum(((r*RHO*WM*YKr)/WK))
(Pz*r*RHO)/P-(r*RHO*Tz)/T
+sum(((r*RHO*WM*YKz)/WK))
-((Pt*r*RHO)/(P*T))+(2*r*RHO*Tt)/T**2
-(RHO*U)/T-(Pr*r*RHO*U)/(P*T)
+(2*r*RH0*Tr*U)/T**2-(r*RHO*Ur)/T
-(Pz*r*RHO*W)/(P*T)+(2*r*RH0*Tz*W)/T**2
-(r*RH0*Wz)/T
-sum(((r*RHO*U*WM*YKr)/(T*WK)))
-sum(((r*RHO*WM*YKt)/(T*WK)))
-sum(((r*RHO*W*WM*YKz)/(T*WK)))
-((Pt*r*RHO*WM)/(P*WK))+(r*RHO*Tt*WM)/(T*WK)
-(RHO*U*WM)/WK-(Pr*r*RHO*U*WM)/(P*WK)
+(r*RHO*Tr*U*WM)/(T*WK)-(r*RHO*Ur*WM)/WK
-(Pz*r*RHO*W*WM)/(P*WK)
+(r*RHO*Tz*W*WM)/(T*WK)-(r*RHO*WM*Wz)/WK
-(2*r*RH0*U*YKr*(WM*WM))/WK**2
-(2*r*RH0*YKt*(WM*WM))/WK**2
-(2*r*RH0*W*YKz*(WM*WM))/WK**2

(RHO*U*Ur*(r*r))/P+(RHO*Ut*(r*r))/P
+(RHO*Uz*W*(r*r))/P
(4*LACP*PRN)/3.d0+(2*LACPt*PRN*r*Tr)/3.do
+RHO*Ur*(r*r)

RHO*Uz*(r*r)
(4*LACPt*PRN*U)/3.dO
+(2*LACPtt*PRN*r*Tr*U)/3.dO
-(4*LACPt*PRN*r*Ur)/3.dO
-(4*LACPtt*PRN*Tr*Ur*(r*r))/3.dO
-(RHO*U*Ur*(r*r))/T
-(4*LACPt*PRN*Urr*(r*r))/3.do
-(RHO*Ut*(r*r))/T-LACPtt*PRN*Tz*Uz*(r*r)

&
&
&
&

s
&
s
&
&
&
&

&
&
&
&
&
&
&

& -LACPt*PRN*Uzz*(r*r)-(RHO*Uz*W*(r*r))/T &
& -LACPtt*PRN*Tz*Wr*(r*r) &
& -(LACPt*PRN*Wrz*(r*r))/3.do &
& +(2*LACPtt*PRN*Tr*Wz*(r*r))/3.d0

DJ(MeqnU ,MvarYK,ind) = -((RHO*U*Ur*WM*(r*r))/WK) &
& -(RHO*Ut*WM*(r*r))/WK-(RHO*Uz*W*WM*(r*r))/WK

DJ(MeqnW ,MvarP ,ind)

&
&
S
S

DJ(MeqnW
DJ(MeqnW
DJ(MeqnW

,MvarU
,MvarW
,MvarT

ind)
ind)
ind)

DJ(MeqnW ,MvarYK,ind)

-((GZ*r*RHO)/P)+(r*RHO*U*Wr)/P+(r*RHO*Wt)/P
+(r*RHO*W*Wz)/P
(2*LACPt*PRN*Tz)/3.dO+r*RHO*Wr
r*RHO*Wz
(GZ*r*RHO)/T+(2*LACPtt*PRN*Tz*U)/3.do
+(2*LACPtt*PRN*r*Tz*Ur)/3.dO
-(LACPt*PRN*r*Urz)/3.dO-(LACPt*PRN*Uz)/3.dO
-LACPtt*PRN*r*Tr*Uz-LACPt*PRN*Wr
-LACPtt*PRN*r*Tr*Wr-(r*RHO*U*Wr)/T
-LACPt*PRN*r*Wrr-(r*RHO*Wt)/T
-(4*LACPtt*PRN*r*Tz*Wz)/3.dO-(r*RHO*W*Wz)/T
-(4*LACPt*PRN*r*Wzz)/3.dO
(GZ*r*RHO*WM)/WK-(r*RHO*U*WM*Wr)/WK
-(r*RHO*WM*Wt)/WK-(r*RHO*W*WM*Wz)/WK

S
&

&
s,
S
&

&
&

&

&
&
&

s

&
s

s
&
&
&
&

DJ(MeqnT
DJ(MeqnT
DJ(MeqnT
DJ(MeqnT

,MvarP
,MvarU
,MvarW
,MvarT

ind)
ind)
ind)
ind)

DJ(MeqnT ,MvarYK,ind)

DJ(MeqnYK,MvarP ,ind) =

DJ(MeqnYK,MvarU ,ind)
DJ(MeqnYK,MvarW ,ind)
DJ(MeqnYK,MvarT ,ind)

(r*RHO*Tt)/P+(r*RHO*Tr*U)/P+(r*RHO*Tz*W)/P
r*RHO*Tr
r*RHO*Tz
(CPt*HEAT*r)/CP**2-LACPt*Tr-LACPt*r*Trr &
-(r*RHO*Tt)/T-LACPt*r*Tzz-(r*RHO*Tr*U)/T &
-(r*RHO*Tz*W)/T-(CPtt*LACP*r*(Tr*Tr))/CP &
-(CPt*LACPt*r*(Tr*Tr))/CP-LACPtt*r*(Tr*Tr) &
+(LACP*r*(CPt*CPt)*(Tr*Tr))/CP**2 &
-(CPtt*LACP*r*(Tz*Tz))/CP &
- (CPt*LACPt*r*(Tz*Tz))/CP-LACPtt*r*(Tz*Tz) &
+(LACP*r*(CPt*CPt)*(Tz*Tz))/CP**2+HEATt
-((r*RHO*Tt*WM)/WK)-(r*RHO*Tr*U*WM)/WK &
-(r*RHO*Tz*W*WM)/WK+HEATy

(RHO*UC*YK)/P-(r*RHO*Tr*UC*YK)/(P*T) &
+(r*RHO*UCr*YK)/P-(r*RHO*Tz*WC*YK)/(P*T) &
+(r*RHO*WCz*YK)/P+(r*RHO*U*YKr)/P &
+(r*RHO*UC*YKr)/P &
+ (r*RHO*UC*WM*YK*YKr)/(P*WK) + (r*RHO*YKt)/P &
+(r*RHO*W*YKz)/P+(r*RHO*WC*YKz)/P &
+(r*RHO*WC*WM*YK*YKz)/(P*WK)

r*RHO*YKr
r*RHO*YKz
-((RHO*UC*YK)/T)-(Pr*r*RHO*UC*YK)/(P*T) &
+(2*r*RHO*Tr*UC*YK)/T**2-(r*RHO*UCr*YK)/T &
- (Pz*r*RHO*WC*YK)/(P*T) &
+ (2*r*RHO*Tz*WC*YK)/T**2-(r*RHO*WCz*YK)/T &
-(LACPt*YKr)/LEK-(LACPtt*r*Tr*YKr)/LEK &
-(r*RHO*U*YKr)/T-(r*RHO*UC*YKr)/T &
- (r*RHO*UC*WM*YK*YKr)/(T*WK) &
-(LACPt*r*YKrr)/LEK-(r*RHO*YKt)/T &
-(LACPtt*r*Tz*YKz)/LEK-(r*RHO*W*YKz)/T &
-(r*RHO*WC*YKz)/T &
- (r*RHO*WC*WM*YK*YKz)/(T*WK) &
-(LACPt*r*YKzz)/LEK

FORALL (k=l:NSP)
roughly correct: dF(YK)/dYK is full since F(YK) contains RHO, a fn of all YK

DJ(MeqnYK(k),MvarYK(k),ind) = RHO*UC+(Pr*r*RHO*UC)/P-(r*RHO*Tr*UC)/T &
& +r*RHO*UCr+(Pz*r*RHO*WC)/P &
& -(r*RHO*Tz*WC)/T+r*RHO*WCz &
& -(RHO*UC*WM*YK(k))/WK(k) &
& -(Pr*r*RHO*UC*WM*YK(k))/(P*WK(k)) &
& + (r*RHO*Tr*UC*WM*YK(k))/(T+WK(k)) &
& -(r*RHO*UCr*WM*YK(k))/WK(k) &
& -(Pz*r*RHO*WC*WM*YK(k))/(P*WK(k)) &
& +(r*RHO*Tz*WC*WM*YK(k))/(T*WK(k)) &
& -(r*RHO*WCz*WM*YK(k))/WK(k) &
& -(r*RHO*U*WM*YKr(k))/WK(k) &
& -(r*RHO*WM*YKt(k))/WK(k) &
Sc - (r*RHO*W*WM*YKz (k))/WK(k) &
& - (2*r*RH0*UC*YK(k)*YKr(k) &
& *(WM*WM))/WK(k)**2 &
& -(2*r*RH0*WC*YK(k)*YKz(k) &
& *(WM*WM))/WK(k)**2

END FORALL
DJ(MeqnYK ,MvarYK ,ind) = DJ(MeqnYK ,MvarYK ,ind) + SOURCEy
! N.B. SOURCEy is a matrix

IF (iDTIME.eq.3) THEN ! Crank-Nicolson only

DO k2 = 1, NVAR
DO kl = 1, NVAR

DJ(kl,k2,ind) = 0.5dO*DJ(kl,k2,ind)
ENDDO
ENDDO

END IF

ADD TIME DERIVATIVE TERMS TO LOCAL COMPONENTS (DIAGONAL ONLY)

IF (iDTIME.ne.0) THEN ! omit time derivatives for steady problem

DJ(MeqnP ,MvarP ,ind) = DJ(MeqnP ,MvarP ,ind) + (ddt*r*RHO)/P
IF (iDTIME.ne.1) THEN
DJ(MeqnP ,MvarT ,ind) = DJ(MeqnP ,MvarT ,ind) -((ddt*r*RHO)/T)
DJ(MeqnP ,MvarYK,ind) = DJ(MeqnP ,MvarYK,ind) + (ddt*r*RHO*WM)/WK
END IF
DJ(MeqnU ,MvarU ,ind) = DJ(MeqnU ,MvarU ,ind) + ddt*RHO*(r*r)
DJ(MeqnW ,MvarW ,ind) = DJ(MeqnW ,MvarW ,ind) + ddt*r*RHO
DJ(MeqnT ,MvarT ,ind) = DJ(MeqnT ,MvarT ,ind) + ddt*r*RHO
FORALL (k=l:NSP)
DJ(MeqnYK(k),MvarYK(k),ind) = DJ(MeqnYK(k),MvarYK(k),ind) &

& + ddt*r*RHO
END FORALL

END IF

! END Analytical DJ

END IF

! SPATIAL COMPONENTS

DQ(MeqnP ,KderPr ,ind)
DQ(MeqnP ,KderPz ,ind)
DQ(MeqnP ,KderUr ,ind)
DQ(MeqnP ,KderWz ,ind)
DQ(MeqnP ,KderTr ,ind)
DQ(MeqnP ,KderTz ,ind)
DQ(MeqnP ,KderYKr ,ind)
DQ(MeqnP ,KderYKz ,ind)

DQ(MeqnU ,KderPr ,ind)
DQ(MeqnU

&
DQ(MeqnU

,KderUr ,ind)

,KderUz ,ind)
DQ(MeqnU ,KderUrr ,ind)
DQ(MeqnU ,KderUzz ,ind)
DQ(MeqnU ,KderWr ,ind)
DQ(MeqnU ,KderWz ,ind)
DQ(MeqnU ,KderWrz ,ind)
DQ(MeqnU

&
,KderTr ,ind)

&
DQ(MeqnU ,KderTz ,ind)

DQ(MeqnW ,KderPz ,ind)
DQ(MeqnW ,KderUr , ind)
DQ(MeqnW ,KderUz , ind)
DQ(MeqnW ,KderUrz ,ind)
DQ(MeqnW ,KderWr ,ind)
DQ(MeqnW ,KderWz ,ind)
DQ(MeqnW ,KderWrr ,ind)
DQ(MeqnW ,KderWzz ,ind)
DQ(MeqnW ,KderTr ,ind)
DQ(MeqnW

&
&

DQ(MeqnT
&

DQ(MeqnT

,KderTz ,ind)

,KderTr ,ind)

,KderTz ,ind)
DQ(MeqnT ,KderTrr ,ind)
DQ(MeqnT ,KderTzz ,ind)

(r*RHO*U)/P
(r*RHO*W)/P
r*RHO
r*RHO
-((r*RHO*U)/T)
-((r*RHO*W)/T)
(r*RHO*U*WM)/WK
(r*RHO*W*WM)/WK

r*r
(-4*LACP*PRN*r)/3.dO
-(4*LACPt*PRN*Tr*(r*r))/3.dO+RHO*U*(r*r)
-(LACPt*PRN*Tz*(r*r))+RHO*W*(r*r)
(-4*LACP*PRN*(r*r))/3.dO
-(LACP*PRN*(r*r))
-(LACPt*PRN*Tz*(r*r))
(2*LACPt*PRN*Tr*(r*r))/3.dO
-(LACP*PRN*(r*r))/3.dO
(2*LACPt*PRN*r*U)/3.dO
-(4*LACPt*PRN*Ur*(r*r))/3.dO
+(2*LACPt*PRN*Wz*(r*r))/3.dO
-(LACPt*PRN*Uz*(r*r))-LACPt*PRN*Wr*(r*r)

(2*LACPt*PRN*r*Tz)/3.d0
-(LACP*PRN)/3.dO-LACPt*PRN*r*Tr
-(LACP*PRN*r)/3.d0
-(LACP*PRN)-LACPt*PRN*r*Tr+r*RHO*U
(-4*LACPt*PRN*r*Tz)/3.dO+r*RHO*W
-(LACP*PRN*r)
(-4*LACP*PRN*r)/3.dO
-(LACPt*PRN*r*Uz)-LACPt*PRN*r*Wr
(2*LACPt*PRN*U)/3.d0
+(2*LACPt*PRN*r*Ur)/3.dO
-(4*LACPt*PRN*r*Wz)/3.dO

-LACP-(2*CPt*LACP*r*Tr)/CP-2*LACPt*r*Tr
+r*RHO*U
(-2*CPt*LACP*r*Tz)/CP-2*LACPt*r*Tz+r*RHO*W
-(LACP+r)
-(LACP*r)

&

DQ(MeqnYK,KderPr ,ind)
DQ(MeqnYK,KderPz ,ind)
DQ(MeqnYK,KderTr ,ind)
DQ(MeqnYK,KderTz ,ind)
FORALL (k=l:NSP)

roughly correct: dF(YK)/dYK is
DQ(MeqnYK(k),KderYKr(k)

(r*RHO*UC*YK)/P
(r*RHO*WC*YK)/P
- ((r*RHO*UC*YK)/T)-(LACPt*r*YKr)/LEK
-((r*RHO*WC*YK)/T)-(LACPt*r*YKz)/LEK

full since F(YK) contains RHO, a fn of all YK
,ind) = -(LACP/LEK(k))-(LACPt*r*Tr)/LEK(k)

& +r*RHO*U+r*RHO*UC
& +(r*RHO*UC*WM*YK(k))/WK(k)

DQ(MeqnYK(k),KderYKz(k) ,ind) = -((LACPt*r*Tz)/LEK(k))+r*RHO*W
& +r*RHO*WC+(r*RHO*WC*WM*YK(k))/WK(k)

DQ(MeqnYK(k),KderYKrr(k),ind) = -((LACP*r)/LEK(k))
DQ(MeqnYK(k),KderYKzz(k),ind) = -((LACP*r)/LEK(k))
END FORALL

IF (iDTIME.eq.3) THEN ! Crank-Nicolson only

DO k2 = 1, NVAR*NDRTP
DO kl = 1, NVAR

DQ(kl,k2,ind) = 0.5dO*DQ(kl,k2,ind)
ENDDO
ENDDO

END IF

ENDDO
ENDDO

JACOBIAN - BOUNDARY NODES

CONDITIONS AT THE INLET: BOUNDARY 1

j = 1

DO i = 2, NR

ind = (j-1)*NR + i

r = RI (i)

PO = AtmPressure
P2 = S(MvarP ,ind)
P = PO + P2
P = PO

u = S (MvarU ,ind)
w = S (MvarW ,ind)
T = S(MvarT ,ind)
YK = S(MvarYK,ind)

Pr = SD(KderPr ,ind)
Pz = SDfKderPz ,ind)
Ur = SD(KderUr ind)
Uz = SD(KderUz ind)
Urr = SD(KderUrr ind)
Uzz = SD(KderUzz ind)
Urz = SD(KderUrz ind)
Wr = SD(KderWr ind)
Wz = SD(KderWz ind)
Wrr = SD(KderWrr ind)
Wzz = SD(KderWzz ind)
Wrz = SD(KderWrz ind)
Tr = SD(KderTr ind)
Tz = SD(KderTz ind)
Trr = SD(KderTrr ind)
Tzz = SD(KderTzz ind)

time derivatives
Wt = O.dO
if (iDTIME.gt.l)

& Wt = VELinlet(i)*MODULATION*2*PI/PERIOD*cos(timephase)

WK = MolecularWeights
WM = MixtureWeight (YK, WK)
RHO = P*MW/(RU*T)
PDYN = P2
GZ = GRAV

CP = SpecificHeat(T)
CPt = O.dO
CPtt = O.dO
LACP = LambdaCp(T)
LACPt = LambdaCp_ddT(T)
LACPtt = LambdaCp_d2dT2(T)
PRN = PrandtlNumber

SpecificHeat_ddT(T)
SpecificHeat_d2dT2(T)
lambda/Cp
d(lambda/Cp)/dT
d2(lambda/Cp)/dT2

s

&
&
&
&

s

DJ(MeqnP ,MvarP ,ind) =

DJ(MeqnP ,MvarU ,ind) =
DJ(MeqnP ,MvarW ,ind) =
! from time derivative
IF (iDTIME.gt.l)

DJ(MeqnP ,MvarW ,ind

DJ(MeqnP ,MvarT ,ind) =

DJ(MeqnP ,MvarYK,ind)

-((GZ*r*RHO)/P)+(r*RHO*U*Wr)/P+(r*RHO*Wt)/P &
+(r*RHO*W*Wz)/P
(2*LACPt*PRN*Tz)/3.dO+r*RHO*Wr
r*RHO*Wz

&
= DJ(MeqnP ,MvarW ,ind) &

+(r*RHO*ddt)
(GZ*r*RHO)/T+(2*LACPtt*PRN*Tz*U)/3.d0 &
+(2*LACPtt*PRN*r*Tz*Ur)/3.do &
-(LACPt*PRN*r*Urz)/3.dO-(LACPt*PRN*Uz)/3.d0 &
-LACPtt*PRN*r*Tr*Uz-LACPt*PRN*Wr &
-LACPtt*PRN*r*Tr*Wr-(r*RHO*U*Wr)/T &
-LACPt*PRN*r*Wrr-(r*RHO*Wt)/T &
-(4*LACPtt*PRN*r*Tz*Wz)/3.dO-(r*RHO*W*Wz)/T &
-(4*LACPt*PRN*r*Wzz)/3.do
(GZ*r*RHO*WM)/WK-(r*RHO*U*WM*Wr)/WK &
-(r*RHO*WM*Wt)/WK-(r*RHO*W*WM*Wz)/WK

DJ(MeqnU ,MvarU ,ind) = 1

DJ(MeqnW ,MvarW ,ind) = 1

DJ(MeqnT ,MvarT ,ind) = 1

FORALL (k=l:NSP)
DJ(MeqnYK(k),MvarYK(k),ind)
END FORALL

= 1

DQ(MeqnP ,KderPz , ind)
DQ(MeqnP ,KderUr , ind)
DQ(MeqnP ,KderUz ,ind)
DQ(MeqnP ,KderUrz , ind)
DQ(MeqnP ,KderWr , ind)
DQ(MeqnP ,KderWz , ind)
DQ(MeqnP ,KderWrr ,ind)
DQ(MeqnP ,KderWzz ,ind)
DQ(MeqnP ,KderTr ,ind)

(2*LACPt*PRN*r*Tz) /3.dO
-(LACP*PRN)/3.dO-LACPt*PRN*r*Tr
-(LACP*PRN*r)/3.dO
-(LACP*PRN)-LACPt*PRN*r*Tr+r*RHO*U
(-4*LACPt*PRN*r*Tz)/3.dO+r*RHO*W
-(LACP*PRN*r)
(-4*LACP*PRN*r)/3.dO
-(LACPt*PRN*r*Uz)-LACPt*PRN*r*Wr

DQ(MeqnP ,KderTz ,ind) = (2*LACPt*PRN*U)/3.do &
& +(2*LACPt*PRN*r*Ur)/3.do &
& -(4*LACPt*PRN*r*Wz)/3.do

ENDDO

Special treatment at symmetry-inlet corner pt
i =1
ind = 1
DJ(MeqnU ,MvarU ,ind) = 1
DJ(MeqnW ,MvarW ,ind) = 1
DJ(MeqnT ,MvarT ,ind) = 1
FORALL (k= =1:NSP)
DJ(MeqnYK(k),MvarYK(k),ind)
END FORALL
DQ(MeqnP ,KderPr ,ind) = 1

CUT

SOME VARIABLES MAY BE FIXED

if (KVFIX.gt.O) then
do ind=l,NODES

do k=l,NVAR
if (NFIX(k).eq.1) then

do kk=l,NVAR
kkderind=(kk-1)*NDRTP
DJ(k,kk,ind) = O.dO
DQ(k,kkderind+1,ind) = 0 dO
DQ(k,kkderind+2,ind) = 0 dO
DQ(k,kkderind+3,ind) = 0 dO
DQ(k,kkderind+4,ind) = 0 dO
DQ (k,kkderind+5,ind) = 0 dO

enddo
DJ(k,k,ind) = l.dO

endif
enddo

enddo
endif

RETURN
END

